package gnu.crypto.cipher; // ---------------------------------------------------------------------------- // $Id: Rijndael.java,v 1.9 2005/10/06 04:24:14 rsdio Exp $ // // Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc. // // This file is part of GNU Crypto. // // GNU Crypto is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // GNU Crypto is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; see the file COPYING. If not, write to the // // Free Software Foundation Inc., // 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301 // USA // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give // you permission to link this library with independent modules to // produce an executable, regardless of the license terms of these // independent modules, and to copy and distribute the resulting // executable under terms of your choice, provided that you also meet, // for each linked independent module, the terms and conditions of the // license of that module. An independent module is a module which is // not derived from or based on this library. If you modify this // library, you may extend this exception to your version of the // library, but you are not obligated to do so. If you do not wish to // do so, delete this exception statement from your version. // ---------------------------------------------------------------------------- import gnu.crypto.Registry; import gnu.crypto.util.Util; //import java.io.PrintWriter; import java.security.InvalidKeyException; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; /** * <p>Rijndael --pronounced Reindaal-- is the AES. It is a variable block-size * (128-, 192- and 256-bit), variable key-size (128-, 192- and 256-bit) * symmetric key block cipher.</p> * * <p>References:</p> * * <ol> * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/rijndael/">The * Rijndael Block Cipher - AES Proposal</a>.<br> * <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a> and * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>.</li> * </ol> * * @version $Revision: 1.9 $ */ public final class Rijndael extends BaseCipher { // Debugging methods and variables // ------------------------------------------------------------------------- // private static final String NAME = "rijndael"; private static final boolean DEBUG = false; private static final int debuglevel = 9; // private static final PrintWriter err = new PrintWriter(System.out, true); // private static void debug(String s) { // err.println(">>> "+NAME+": "+s); // } // Constants and variables // ------------------------------------------------------------------------- private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes private static final int DEFAULT_KEY_SIZE = 16; // in bytes private static final String SS = "\u637C\u777B\uF26B\u6FC5\u3001\u672B\uFED7\uAB76" + "\uCA82\uC97D\uFA59\u47F0\uADD4\uA2AF\u9CA4\u72C0" + "\uB7FD\u9326\u363F\uF7CC\u34A5\uE5F1\u71D8\u3115" + "\u04C7\u23C3\u1896\u059A\u0712\u80E2\uEB27\uB275" + "\u0983\u2C1A\u1B6E\u5AA0\u523B\uD6B3\u29E3\u2F84" + "\u53D1\u00ED\u20FC\uB15B\u6ACB\uBE39\u4A4C\u58CF" + "\uD0EF\uAAFB\u434D\u3385\u45F9\u027F\u503C\u9FA8" + "\u51A3\u408F\u929D\u38F5\uBCB6\uDA21\u10FF\uF3D2" + "\uCD0C\u13EC\u5F97\u4417\uC4A7\u7E3D\u645D\u1973" + "\u6081\u4FDC\u222A\u9088\u46EE\uB814\uDE5E\u0BDB" + "\uE032\u3A0A\u4906\u245C\uC2D3\uAC62\u9195\uE479" + "\uE7C8\u376D\u8DD5\u4EA9\u6C56\uF4EA\u657A\uAE08" + "\uBA78\u252E\u1CA6\uB4C6\uE8DD\u741F\u4BBD\u8B8A" + "\u703E\uB566\u4803\uF60E\u6135\u57B9\u86C1\u1D9E" + "\uE1F8\u9811\u69D9\u8E94\u9B1E\u87E9\uCE55\u28DF" + "\u8CA1\u890D\uBFE6\u4268\u4199\u2D0F\uB054\uBB16"; private static final byte[] S = new byte[256]; private static final byte[] Si = new byte[256]; private static final int[] T1 = new int[256]; private static final int[] T2 = new int[256]; private static final int[] T3 = new int[256]; private static final int[] T4 = new int[256]; private static final int[] T5 = new int[256]; private static final int[] T6 = new int[256]; private static final int[] T7 = new int[256]; private static final int[] T8 = new int[256]; private static final int[] U1 = new int[256]; private static final int[] U2 = new int[256]; private static final int[] U3 = new int[256]; private static final int[] U4 = new int[256]; private static final byte[] rcon = new byte[30]; private static final int[][][] shifts = new int[][][] { { {0, 0}, {1, 3}, {2, 2}, {3, 1} }, { {0, 0}, {1, 5}, {2, 4}, {3, 3} }, { {0, 0}, {1, 7}, {3, 5}, {4, 4} } }; /** * KAT vector (from ecb_vk): * I=96 * KEY=0000000000000000000000010000000000000000000000000000000000000000 * CT=E44429474D6FC3084EB2A6B8B46AF754 */ private static final byte[] KAT_KEY = Util.toBytesFromString("0000000000000000000000010000000000000000000000000000000000000000"); private static final byte[] KAT_CT = Util.toBytesFromString("E44429474D6FC3084EB2A6B8B46AF754"); /** caches the result of the correctness test, once executed. */ private static Boolean valid; // Static code - to intialise lookup tables -------------------------------- static { long time = System.currentTimeMillis(); int ROOT = 0x11B; int i, j = 0; // S-box, inverse S-box, T-boxes, U-boxes int s, s2, s3, i2, i4, i8, i9, ib, id, ie, t; char c; for (i = 0; i < 256; i++) { c = SS.charAt(i >>> 1); S[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c & 0xFF); s = S[i] & 0xFF; Si[s] = (byte)i; s2 = s << 1; if (s2 >= 0x100) { s2 ^= ROOT; } s3 = s2 ^ s; i2 = i << 1; if (i2 >= 0x100) { i2 ^= ROOT; } i4 = i2 << 1; if (i4 >= 0x100) { i4 ^= ROOT; } i8 = i4 << 1; if (i8 >= 0x100) { i8 ^= ROOT; } i9 = i8 ^ i; ib = i9 ^ i2; id = i9 ^ i4; ie = i8 ^ i4 ^ i2; T1[i] = t = (s2 << 24) | (s << 16) | (s << 8) | s3; T2[i] = (t >>> 8) | (t << 24); T3[i] = (t >>> 16) | (t << 16); T4[i] = (t >>> 24) | (t << 8); T5[s] = U1[i] = t = (ie << 24) | (i9 << 16) | (id << 8) | ib; T6[s] = U2[i] = (t >>> 8) | (t << 24); T7[s] = U3[i] = (t >>> 16) | (t << 16); T8[s] = U4[i] = (t >>> 24) | (t << 8); } // // round constants // int r = 1; rcon[0] = 1; for (i = 1; i < 30; i++) { r <<= 1; if (r >= 0x100) { r ^= ROOT; } rcon[i] = (byte)r; } time = System.currentTimeMillis() - time; if (DEBUG && debuglevel > 8) { System.out.println("=========="); System.out.println(); System.out.println("Static Data"); System.out.println(); System.out.println("S[]:"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) { System.out.print("0x"+Util.toString(S[i*16+j])+", "); } System.out.println(); } System.out.println(); System.out.println("Si[]:"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) { System.out.print("0x"+Util.toString(Si[i*16+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T1[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T1[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T2[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T2[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T3[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T3[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T4[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T4[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T5[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T5[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T6[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T6[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T7[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T7[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("T8[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(T8[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("U1[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(U1[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("U2[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(U2[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("U3[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.print("0x"+Util.toString(U3[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("U4[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) { System.out.println("0x"+Util.toString(U4[i*4+j])+", "); } System.out.println(); } System.out.println(); System.out.println("rcon[]:"); for (i = 0; i < 5; i++){ for (j = 0; j < 6; j++) { System.out.print("0x"+Util.toString(rcon[i*6+j])+", "); } System.out.println(); } System.out.println(); System.out.println("Total initialization time: "+time+" ms."); System.out.println(); } } // Constructor(s) // ------------------------------------------------------------------------- /** Trivial 0-arguments constructor. */ public Rijndael() { super(Registry.RIJNDAEL_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); } // Class methods // ------------------------------------------------------------------------- /** * <p>Returns the number of rounds for a given Rijndael's key and block * sizes.</p> * * @param ks the size of the user key material in bytes. * @param bs the desired block size in bytes. * @return the number of rounds for a given Rijndael's key and block sizes. */ public static int getRounds(int ks, int bs) { switch (ks) { case 16: return bs == 16 ? 10 : (bs == 24 ? 12 : 14); case 24: return bs != 32 ? 12 : 14; default: // 32 bytes = 256 bits return 14; } } private static void rijndaelEncrypt(byte[] in, int inOffset, byte[] out, int outOffset, Object sessionKey, int bs) { Object[] sKey = (Object[]) sessionKey; // extract encryption round keys int[][] Ke = (int[][]) sKey[0]; int BC = bs / 4; int ROUNDS = Ke.length - 1; int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); int s1 = shifts[SC][1][0]; int s2 = shifts[SC][2][0]; int s3 = shifts[SC][3][0]; int[] a = new int[BC]; int[] t = new int[BC]; // temporary work array int i, tt; for (i = 0; i < BC; i++) { // plaintext to ints + key t[i] = ( in[inOffset++] << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Ke[0][i]; } for (int r = 1; r < ROUNDS; r++) { // apply round transforms for (i = 0; i < BC; i++) { a[i] = (T1[(t[ i ] >>> 24) ] ^ T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i]; } System.arraycopy(a, 0, t, 0, BC); if (DEBUG && debuglevel > 6) { System.out.println("CT"+r+"="+Util.toString(t)); } } for (i = 0; i < BC; i++) { // last round is special tt = Ke[ROUNDS][i]; out[outOffset++] = (byte)(S[(t[ i ] >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt ); } if (DEBUG && debuglevel > 6) { System.out.println("CT="+Util.toString(out, outOffset-bs+1, bs)); System.out.println(); } } private static void rijndaelDecrypt(byte[] in, int inOffset, byte[] out, int outOffset, Object sessionKey, int bs) { Object[] sKey = (Object[]) sessionKey; // extract decryption round keys int[][] Kd = (int[][]) sKey[1]; int BC = bs / 4; int ROUNDS = Kd.length - 1; int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2); int s1 = shifts[SC][1][1]; int s2 = shifts[SC][2][1]; int s3 = shifts[SC][3][1]; int[] a = new int[BC]; int[] t = new int[BC]; // temporary work array int i, tt; for (i = 0; i < BC; i++) { // ciphertext to ints + key t[i] = ( in[inOffset++] << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ Kd[0][i]; } for (int r = 1; r < ROUNDS; r++) { // apply round transforms for (i = 0; i < BC; i++) { a[i] = (T5[(t[ i ] >>> 24) ] ^ T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i]; } System.arraycopy(a, 0, t, 0, BC); if (DEBUG && debuglevel > 6) { System.out.println("PT"+r+"="+Util.toString(t)); } } for (i = 0; i < BC; i++) { // last round is special tt = Kd[ROUNDS][i]; out[outOffset++] = (byte)(Si[(t[ i ] >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt ); } if (DEBUG && debuglevel > 6) { System.out.println("PT="+Util.toString(out, outOffset-bs+1, bs)); System.out.println(); } } private static void aesEncrypt(byte[] in, int i, byte[] out, int j, Object key) { int[][] Ke = (int[][]) ((Object[]) key)[0]; // extract encryption round keys int ROUNDS = Ke.length - 1; int[] Ker = Ke[0]; // plaintext to ints + key int t0 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[0]; int t1 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[1]; int t2 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[2]; int t3 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[3]; int a0, a1, a2, a3; for (int r = 1; r < ROUNDS; r++) { // apply round transforms Ker = Ke[r]; a0 = (T1[(t0 >>> 24) ] ^ T2[(t1 >>> 16) & 0xFF] ^ T3[(t2 >>> 8) & 0xFF] ^ T4[ t3 & 0xFF] ) ^ Ker[0]; a1 = (T1[(t1 >>> 24) ] ^ T2[(t2 >>> 16) & 0xFF] ^ T3[(t3 >>> 8) & 0xFF] ^ T4[ t0 & 0xFF] ) ^ Ker[1]; a2 = (T1[(t2 >>> 24) ] ^ T2[(t3 >>> 16) & 0xFF] ^ T3[(t0 >>> 8) & 0xFF] ^ T4[ t1 & 0xFF] ) ^ Ker[2]; a3 = (T1[(t3 >>> 24) ] ^ T2[(t0 >>> 16) & 0xFF] ^ T3[(t1 >>> 8) & 0xFF] ^ T4[ t2 & 0xFF] ) ^ Ker[3]; t0 = a0; t1 = a1; t2 = a2; t3 = a3; if (DEBUG && debuglevel > 6) { System.out.println("CT"+r+"="+Util.toString(t0)+Util.toString(t1) +Util.toString(t2)+Util.toString(t3)); } } // last round is special Ker = Ke[ROUNDS]; int tt = Ker[0]; out[j++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t3 & 0xFF] ^ tt ); tt = Ker[1]; out[j++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t0 & 0xFF] ^ tt ); tt = Ker[2]; out[j++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t1 & 0xFF] ^ tt ); tt = Ker[3]; out[j++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[ t2 & 0xFF] ^ tt ); if (DEBUG && debuglevel > 6) { System.out.println("CT="+Util.toString(out, j-15, 16)); System.out.println(); } } private static void aesDecrypt(byte[] in, int i, byte[] out, int j, Object key) { int[][] Kd = (int[][]) ((Object[]) key)[1]; // extract decryption round keys int ROUNDS = Kd.length - 1; int[] Kdr = Kd[0]; // ciphertext to ints + key int t0 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[0]; int t1 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[1]; int t2 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[2]; int t3 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Kdr[3]; int a0, a1, a2, a3; for (int r = 1; r < ROUNDS; r++) { // apply round transforms Kdr = Kd[r]; a0 = (T5[(t0 >>> 24) ] ^ T6[(t3 >>> 16) & 0xFF] ^ T7[(t2 >>> 8) & 0xFF] ^ T8[ t1 & 0xFF] ) ^ Kdr[0]; a1 = (T5[(t1 >>> 24) ] ^ T6[(t0 >>> 16) & 0xFF] ^ T7[(t3 >>> 8) & 0xFF] ^ T8[ t2 & 0xFF] ) ^ Kdr[1]; a2 = (T5[(t2 >>> 24) ] ^ T6[(t1 >>> 16) & 0xFF] ^ T7[(t0 >>> 8) & 0xFF] ^ T8[ t3 & 0xFF] ) ^ Kdr[2]; a3 = (T5[(t3 >>> 24) ] ^ T6[(t2 >>> 16) & 0xFF] ^ T7[(t1 >>> 8) & 0xFF] ^ T8[ t0 & 0xFF] ) ^ Kdr[3]; t0 = a0; t1 = a1; t2 = a2; t3 = a3; if (DEBUG && debuglevel > 6) { System.out.println("PT"+r+"="+Util.toString(t0)+Util.toString(t1) +Util.toString(t2)+Util.toString(t3)); } } // last round is special Kdr = Kd[ROUNDS]; int tt = Kdr[0]; out[j++] = (byte)(Si[(t0 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t1 & 0xFF] ^ tt ); tt = Kdr[1]; out[j++] = (byte)(Si[(t1 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t2 & 0xFF] ^ tt ); tt = Kdr[2]; out[j++] = (byte)(Si[(t2 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t3 & 0xFF] ^ tt ); tt = Kdr[3]; out[j++] = (byte)(Si[(t3 >>> 24) ] ^ (tt >>> 24)); out[j++] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(Si[ t0 & 0xFF] ^ tt ); if (DEBUG && debuglevel > 6) { System.out.println("PT="+Util.toString(out, j-15, 16)); System.out.println(); } } // Instance methods // ------------------------------------------------------------------------- // java.lang.Cloneable interface implementation ---------------------------- public Object clone() { Rijndael result = new Rijndael(); result.currentBlockSize = this.currentBlockSize; return result; } // IBlockCipherSpi interface implementation -------------------------------- public Iterator blockSizes() { ArrayList al = new ArrayList(); al.add(new Integer(128 / 8)); al.add(new Integer(192 / 8)); al.add(new Integer(256 / 8)); return Collections.unmodifiableList(al).iterator(); } public Iterator keySizes() { ArrayList al = new ArrayList(); al.add(new Integer(128 / 8)); al.add(new Integer(192 / 8)); al.add(new Integer(256 / 8)); return Collections.unmodifiableList(al).iterator(); } /** * Expands a user-supplied key material into a session key for a designated * <i>block size</i>. * * @param k the 128/192/256-bit user-key to use. * @param bs the block size in bytes of this Rijndael. * @return an Object encapsulating the session key. * @exception IllegalArgumentException if the block size is not 16, 24 or 32. * @exception InvalidKeyException if the key data is invalid. */ public Object makeKey(byte[] k, int bs) throws InvalidKeyException { if (k == null) { throw new InvalidKeyException("Empty key"); } if (!(k.length == 16 || k.length == 24 || k.length == 32)) { throw new InvalidKeyException("Incorrect key length"); } if (!(bs == 16 || bs == 24 || bs == 32)) { throw new IllegalArgumentException(); } int ROUNDS = getRounds(k.length, bs); int BC = bs / 4; int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys int ROUND_KEY_COUNT = (ROUNDS + 1) * BC; int KC = k.length / 4; int[] tk = new int[KC]; int i, j; // copy user material bytes into temporary ints for (i = 0, j = 0; i < KC; ) { tk[i++] = k[j++] << 24 | (k[j++] & 0xFF) << 16 | (k[j++] & 0xFF) << 8 | (k[j++] & 0xFF); } // copy values into round key arrays int t = 0; for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / BC][t % BC] = tk[j]; Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; } int tt, rconpointer = 0; while (t < ROUND_KEY_COUNT) { // extrapolate using phi (the round key evolution function) tt = tk[KC - 1]; tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^ (S[ tt & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 24) ] & 0xFF) ^ rcon[rconpointer++] << 24; if (KC != 8) { for (i = 1, j = 0; i < KC; ) { tk[i++] ^= tk[j++]; } } else { for (i = 1, j = 0; i < KC / 2; ) { tk[i++] ^= tk[j++]; } tt = tk[KC / 2 - 1]; tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^ S[(tt >>> 24) & 0xFF] << 24; for (j = KC / 2, i = j + 1; i < KC; ) { tk[i++] ^= tk[j++]; } } // copy values into round key arrays for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / BC][t % BC] = tk[j]; Kd[ROUNDS - (t / BC)][t % BC] = tk[j]; } } for (int r = 1; r < ROUNDS; r++) { // inverse MixColumn where needed for (j = 0; j < BC; j++) { tt = Kd[r][j]; Kd[r][j] = U1[(tt >>> 24) ] ^ U2[(tt >>> 16) & 0xFF] ^ U3[(tt >>> 8) & 0xFF] ^ U4[ tt & 0xFF]; } } return new Object[] {Ke, Kd}; } public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (!(bs == 16 || bs == 24 || bs == 32)) { throw new IllegalArgumentException(); } if (bs == DEFAULT_BLOCK_SIZE) { aesEncrypt(in, i, out, j, k); } else { rijndaelEncrypt(in, i, out, j, k, bs); } } public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (!(bs == 16 || bs == 24 || bs == 32)) { throw new IllegalArgumentException(); } if (bs == DEFAULT_BLOCK_SIZE) { aesDecrypt(in, i, out, j, k); } else { rijndaelDecrypt(in, i, out, j, k, bs); } } public boolean selfTest() { if (valid == null) { boolean result = super.selfTest(); // do symmetry tests if (result) { result = testKat(KAT_KEY, KAT_CT); } valid = new Boolean(result); } return valid.booleanValue(); } }