package gnu.crypto.cipher; // ---------------------------------------------------------------------------- // $Id: DES.java,v 1.4 2005/10/06 04:24:14 rsdio Exp $ // // Copyright (C) 2002, 2003 Free Software Foundation, Inc. // // This file is part of GNU Crypto. // // GNU Crypto is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // GNU Crypto is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; see the file COPYING. If not, write to the // // Free Software Foundation Inc., // 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301 // USA // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give // you permission to link this library with independent modules to // produce an executable, regardless of the license terms of these // independent modules, and to copy and distribute the resulting // executable under terms of your choice, provided that you also meet, // for each linked independent module, the terms and conditions of the // license of that module. An independent module is a module which is // not derived from or based on this library. If you modify this // library, you may extend this exception to your version of the // library, but you are not obligated to do so. If you do not wish to // do so, delete this exception statement from your version. // // -------------------------------------------------------------------------- import gnu.crypto.Registry; import gnu.crypto.Properties; import gnu.crypto.util.Util; import java.security.InvalidKeyException; import java.util.Arrays; import java.util.Collections; import java.util.Iterator; /** * <p>The Data Encryption Standard. DES is a 64-bit block cipher with a 56-bit * key, developed by IBM in the 1970's for the standardization process begun by * the National Bureau of Standards (now NIST).</p> * * <p>New applications should not use DES except for compatibility.</p> * * <p>This version is based upon the description and sample implementation in * [1].</p> * * <p>References:</p> * <ol> * <li>Bruce Schneier, <i>Applied Cryptography: Protocols, Algorithms, and * Source Code in C, Second Edition</i>. (1996 John Wiley and Sons) ISBN * 0-471-11709-9. Pages 265--301, 623--632.</li> * </ol> * * @version $Revision: 1.4 $ */ public class DES extends BaseCipher { // Constants and variables // ------------------------------------------------------------------------- /** DES operates on 64 bit blocks. */ public static final int BLOCK_SIZE = 8; /** DES uses 56 bits of a 64 bit parity-adjusted key. */ public static final int KEY_SIZE = 8; // S-Boxes 1 through 8. private static final int[] SP1 = new int[] { 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }; private static final int[] SP2 = new int[] { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }; private static final int[] SP3 = new int[] { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }; private static final int[] SP4 = new int[] { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }; private static final int[] SP5 = new int[] { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }; private static final int[] SP6 = new int[] { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }; private static final int[] SP7 = new int[] { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }; private static final int[] SP8 = new int[] { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 }; /** * Constants that help in determining whether or not a byte array is parity * adjusted. */ private static final byte[] PARITY = { 8,1,0,8,0,8,8,0,0,8,8,0,8,0,2,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,3, 0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8, 0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8, 8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0, 0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8, 8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0, 8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0, 4,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,5,0,8,0,8,8,0,0,8,8,0,8,0,6,8 }; // Key schedule constants. private static final byte[] ROTARS = { 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }; private static final byte[] PC1 = { 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 }; private static final byte[] PC2 = { 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 }; /** * Weak keys (parity adjusted): If all the bits in each half are either 0 * or 1, then the key used for any cycle of the algorithm is the same as * all other cycles. */ public static final byte[][] WEAK_KEYS = { Util.toBytesFromString("0101010101010101"), Util.toBytesFromString("01010101FEFEFEFE"), Util.toBytesFromString("FEFEFEFE01010101"), Util.toBytesFromString("FEFEFEFEFEFEFEFE") }; /** * Semi-weak keys (parity adjusted): Some pairs of keys encrypt plain text * to identical cipher text. In other words, one key in the pair can decrypt * messages that were encrypted with the other key. These keys are called * semi-weak keys. This occurs because instead of 16 different sub-keys being * generated, these semi-weak keys produce only two different sub-keys. */ public static final byte[][] SEMIWEAK_KEYS = { Util.toBytesFromString("01FE01FE01FE01FE"), Util.toBytesFromString("FE01FE01FE01FE01"), Util.toBytesFromString("1FE01FE00EF10EF1"), Util.toBytesFromString("E01FE01FF10EF10E"), Util.toBytesFromString("01E001E001F101F1"), Util.toBytesFromString("E001E001F101F101"), Util.toBytesFromString("1FFE1FFE0EFE0EFE"), Util.toBytesFromString("FE1FFE1FFE0EFE0E"), Util.toBytesFromString("011F011F010E010E"), Util.toBytesFromString("1F011F010E010E01"), Util.toBytesFromString("E0FEE0FEF1FEF1FE"), Util.toBytesFromString("FEE0FEE0FEF1FEF1") }; /** Possible weak keys (parity adjusted) --produce 4 instead of 16 subkeys. */ public static final byte[][] POSSIBLE_WEAK_KEYS = { Util.toBytesFromString("1F1F01010E0E0101"), Util.toBytesFromString("011F1F01010E0E01"), Util.toBytesFromString("1F01011F0E01010E"), Util.toBytesFromString("01011F1F01010E0E"), Util.toBytesFromString("E0E00101F1F10101"), Util.toBytesFromString("FEFE0101FEFE0101"), Util.toBytesFromString("FEE01F01FEF10E01"), Util.toBytesFromString("E0FE1F01F1FE0E01"), Util.toBytesFromString("FEE0011FFEF1010E"), Util.toBytesFromString("E0FE011FF1FE010E"), Util.toBytesFromString("E0E01F1FF1F10E0E"), Util.toBytesFromString("FEFE1F1FFEFE0E0E"), Util.toBytesFromString("1F1F01010E0E0101"), Util.toBytesFromString("011F1F01010E0E01"), Util.toBytesFromString("1F01011F0E01010E"), Util.toBytesFromString("01011F1F01010E0E"), Util.toBytesFromString("01E0E00101F1F101"), Util.toBytesFromString("1FFEE0010EFEF001"), Util.toBytesFromString("1FE0FE010EF1FE01"), Util.toBytesFromString("01FEFE0101FEFE01"), Util.toBytesFromString("1FE0E01F0EF1F10E"), Util.toBytesFromString("01FEE01F01FEF10E"), Util.toBytesFromString("01E0FE1F01F1FE0E"), Util.toBytesFromString("1FFEFE1F0EFEFE0E"), Util.toBytesFromString("E00101E0F10101F1"), Util.toBytesFromString("FE1F01E0FE0E0EF1"), Util.toBytesFromString("FE011FE0FE010EF1"), Util.toBytesFromString("E01F1FE0F10E0EF1"), Util.toBytesFromString("FE0101FEFE0101FE"), Util.toBytesFromString("E01F01FEF10E01FE"), Util.toBytesFromString("E0011FFEF1010EFE"), Util.toBytesFromString("FE1F1FFEFE0E0EFE"), Util.toBytesFromString("1FFE01E00EFE01F1"), Util.toBytesFromString("01FE1FE001FE0EF1"), Util.toBytesFromString("1FE001FE0EF101FE"), Util.toBytesFromString("01E01FFE01F10EFE"), Util.toBytesFromString("0101E0E00101F1F1"), Util.toBytesFromString("1F1FE0E00E0EF1F1"), Util.toBytesFromString("1F01FEE00E01FEF1"), Util.toBytesFromString("011FFEE0010EFEF1"), Util.toBytesFromString("1F01E0FE0E01F1FE"), Util.toBytesFromString("011FE0FE010EF1FE"), Util.toBytesFromString("0101FEFE0001FEFE"), Util.toBytesFromString("1F1FFEFE0E0EFEFE"), Util.toBytesFromString("FEFEE0E0FEFEF1F1"), Util.toBytesFromString("E0FEFEE0F1FEFEF1"), Util.toBytesFromString("FEE0E0FEFEF1F1FE"), Util.toBytesFromString("E0E0FEFEF1F1FEFE") }; // Constructor(s) // ------------------------------------------------------------------------- /** Default 0-argument constructor. */ public DES() { super(Registry.DES_CIPHER, BLOCK_SIZE, KEY_SIZE); } // Class methods // ------------------------------------------------------------------------- /** * <p>Adjust the parity for a raw key array. This essentially means that each * byte in the array will have an odd number of '1' bits (the last bit in * each byte is unused.</p> * * @param kb The key array, to be parity-adjusted. * @param offset The starting index into the key bytes. */ public static void adjustParity(byte[] kb, int offset) { for (int i = offset; i < KEY_SIZE; i++) { kb[i] ^= (PARITY[kb[i] & 0xff] == 8) ? 1 : 0; } } /** * <p>Test if a byte array, which must be at least 8 bytes long, is parity * adjusted.</p> * * @param kb The key bytes. * @param offset The starting index into the key bytes. * @return <code>true</code> if the first 8 bytes of <i>kb</i> have been * parity adjusted. <code>false</code> otherwise. */ public static boolean isParityAdjusted(byte[] kb, int offset) { int w = 0x88888888; int n = PARITY[kb[offset+0] & 0xff]; n <<= 4; n |= PARITY[kb[offset+1] & 0xff]; n <<= 4; n |= PARITY[kb[offset+2] & 0xff]; n <<= 4; n |= PARITY[kb[offset+3] & 0xff]; n <<= 4; n |= PARITY[kb[offset+4] & 0xff]; n <<= 4; n |= PARITY[kb[offset+5] & 0xff]; n <<= 4; n |= PARITY[kb[offset+6] & 0xff]; n <<= 4; n |= PARITY[kb[offset+7] & 0xff]; return (n & w) == 0; } /** * <p>Test if a key is a weak key.</p> * * @param kb The key to test. * @return <code>true</code> if the key is weak. */ public static boolean isWeak(byte[] kb) { // return Arrays.equals(kb, WEAK_KEYS[0]) || Arrays.equals(kb, WEAK_KEYS[1]) // || Arrays.equals(kb, WEAK_KEYS[2]) || Arrays.equals(kb, WEAK_KEYS[3]) // || Arrays.equals(kb, WEAK_KEYS[4]) || Arrays.equals(kb, WEAK_KEYS[5]) // || Arrays.equals(kb, WEAK_KEYS[6]) || Arrays.equals(kb, WEAK_KEYS[7]); for (int i = 0; i < WEAK_KEYS.length; i++) { if (Arrays.equals(WEAK_KEYS[i], kb)) { return true; } } return false; } /** * <p>Test if a key is a semi-weak key.</p> * * @param kb The key to test. * @return <code>true</code> if this key is semi-weak. */ public static boolean isSemiWeak(byte[] kb) { // return Arrays.equals(kb, SEMIWEAK_KEYS[0]) // || Arrays.equals(kb, SEMIWEAK_KEYS[1]) // || Arrays.equals(kb, SEMIWEAK_KEYS[2]) // || Arrays.equals(kb, SEMIWEAK_KEYS[3]) // || Arrays.equals(kb, SEMIWEAK_KEYS[4]) // || Arrays.equals(kb, SEMIWEAK_KEYS[5]) // || Arrays.equals(kb, SEMIWEAK_KEYS[6]) // || Arrays.equals(kb, SEMIWEAK_KEYS[7]) // || Arrays.equals(kb, SEMIWEAK_KEYS[8]) // || Arrays.equals(kb, SEMIWEAK_KEYS[9]) // || Arrays.equals(kb, SEMIWEAK_KEYS[10]) // || Arrays.equals(kb, SEMIWEAK_KEYS[11]); for (int i = 0; i < SEMIWEAK_KEYS.length; i++) { if (Arrays.equals(SEMIWEAK_KEYS[i], kb)) { return true; } } return false; } /** * <p>Test if the designated byte array represents a possibly weak key.</p> * * @param kb the byte array to test. * @return <code>true</code> if <code>kb</code>represents a possibly weak key. * Returns <code>false</code> otherwise. */ public static boolean isPossibleWeak(byte[] kb) { for (int i = 0; i < POSSIBLE_WEAK_KEYS.length; i++) { if (Arrays.equals(POSSIBLE_WEAK_KEYS[i], kb)) { return true; } } return false; } /** * <p>The core DES function. This is used for both encryption and decryption, * the only difference being the key.</p> * * @param in The input bytes. * @param i The starting offset into the input bytes. * @param out The output bytes. * @param o The starting offset into the output bytes. * @param key The working key. */ private static void desFunc(byte[] in, int i, byte[] out, int o, int[] key) { int right, left, work; // Load. left = (in[i++] & 0xff) << 24 | (in[i++] & 0xff) << 16 | (in[i++] & 0xff) << 8 | in[i++] & 0xff; right = (in[i++] & 0xff) << 24 | (in[i++] & 0xff) << 16 | (in[i++] & 0xff) << 8 | in[i ] & 0xff; // Initial permutation. work = ((left >>> 4) ^ right) & 0x0F0F0F0F; left ^= work << 4; right ^= work; work = ((left >>> 16) ^ right) & 0x0000FFFF; left ^= work << 16; right ^= work; work = ((right >>> 2) ^ left) & 0x33333333; right ^= work << 2; left ^= work; work = ((right >>> 8) ^ left) & 0x00FF00FF; right ^= work << 8; left ^= work; right = ((right << 1) | ((right >>> 31) & 1)) & 0xFFFFFFFF; work = (left ^ right) & 0xAAAAAAAA; left ^= work; right ^= work; left = ((left << 1) | ((left >>> 31) & 1)) & 0xFFFFFFFF; int k = 0, t; for (int round = 0; round < 8; round++) { work = right >>> 4 | right << 28; work ^= key[k++]; t = SP7[work & 0x3F]; work >>>= 8; t |= SP5[work & 0x3F]; work >>>= 8; t |= SP3[work & 0x3F]; work >>>= 8; t |= SP1[work & 0x3F]; work = right ^ key[k++]; t |= SP8[work & 0x3F]; work >>>= 8; t |= SP6[work & 0x3F]; work >>>= 8; t |= SP4[work & 0x3F]; work >>>= 8; t |= SP2[work & 0x3F]; left ^= t; work = left >>> 4 | left << 28; work ^= key[k++]; t = SP7[work & 0x3F]; work >>>= 8; t |= SP5[work & 0x3F]; work >>>= 8; t |= SP3[work & 0x3F]; work >>>= 8; t |= SP1[work & 0x3F]; work = left ^ key[k++]; t |= SP8[work & 0x3F]; work >>>= 8; t |= SP6[work & 0x3F]; work >>>= 8; t |= SP4[work & 0x3F]; work >>>= 8; t |= SP2[work & 0x3F]; right ^= t; } // The final permutation. right = (right << 31) | (right >>> 1); work = (left ^ right) & 0xAAAAAAAA; left ^= work; right ^= work; left = (left << 31) | (left >>> 1); work = ((left >>> 8) ^ right) & 0x00FF00FF; left ^= work << 8; right ^= work; work = ((left >>> 2) ^ right) & 0x33333333; left ^= work << 2; right ^= work; work = ((right >>> 16) ^ left) & 0x0000FFFF; right ^= work << 16; left ^= work; work = ((right >>> 4) ^ left) & 0x0F0F0F0F; right ^= work << 4; left ^= work; out[o++] = (byte)(right >>> 24); out[o++] = (byte)(right >>> 16); out[o++] = (byte)(right >>> 8); out[o++] = (byte) right; out[o++] = (byte)(left >>> 24); out[o++] = (byte)(left >>> 16); out[o++] = (byte)(left >>> 8); out[o ] = (byte) left; } // Instance methods implementing BaseCipher // ------------------------------------------------------------------------- public Object clone() { return new DES(); } public Iterator blockSizes() { return Collections.singleton(new Integer(BLOCK_SIZE)).iterator(); } public Iterator keySizes() { return Collections.singleton(new Integer(KEY_SIZE)).iterator(); } public Object makeKey(byte[] kb, int bs) throws InvalidKeyException { if (kb == null || kb.length != KEY_SIZE) throw new InvalidKeyException("DES keys must be 8 bytes long"); if (Properties.checkForWeakKeys() && (isWeak(kb) || isSemiWeak(kb) || isPossibleWeak(kb))) { throw new WeakKeyException(); } int i, j, l, m, n; long pc1m = 0, pcr = 0; for (i = 0; i < 56; i++) { l = PC1[i]; pc1m |= ((kb[l >>> 3] & (0x80 >>> (l & 7))) != 0) ? (1L << (55 - i)) : 0; } Context ctx = new Context(); // Encryption key first. for (i = 0; i < 16; i++) { pcr = 0; m = i << 1; n = m + 1; for (j = 0; j < 28; j++) { l = j + ROTARS[i]; if (l < 28) pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0; else pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j)) : 0; } for (j = 28; j < 56; j++) { l = j + ROTARS[i]; if (l < 56) pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0; else pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j)) : 0; } for (j = 0; j < 24; j++) { if ((pcr & 1L << (55 - PC2[j ])) != 0) ctx.ek[m] |= 1 << (23 - j); if ((pcr & 1L << (55 - PC2[j+24])) != 0) ctx.ek[n] |= 1 << (23 - j); } } // The decryption key is the same, but in reversed order. for (i = 0; i < Context.EXPANDED_KEY_SIZE; i += 2) { ctx.dk[30 - i] = ctx.ek[i]; ctx.dk[31 - i] = ctx.ek[i+1]; } // "Cook" the keys. for (i = 0; i < 32; i += 2) { int x, y; x = ctx.ek[i ]; y = ctx.ek[i+1]; ctx.ek[i ] = ((x & 0x00FC0000) << 6) | ((x & 0x00000FC0) << 10) | ((y & 0x00FC0000) >>> 10) | ((y & 0x00000FC0) >>> 6); ctx.ek[i+1] = ((x & 0x0003F000) << 12) | ((x & 0x0000003F) << 16) | ((y & 0x0003F000) >>> 4) | (y & 0x0000003F); x = ctx.dk[i ]; y = ctx.dk[i+1]; ctx.dk[i ] = ((x & 0x00FC0000) << 6) | ((x & 0x00000FC0) << 10) | ((y & 0x00FC0000) >>> 10) | ((y & 0x00000FC0) >>> 6); ctx.dk[i+1] = ((x & 0x0003F000) << 12) | ((x & 0x0000003F) << 16) | ((y & 0x0003F000) >>> 4) | (y & 0x0000003F); } return ctx; } public void encrypt(byte[] in, int i, byte[] out, int o, Object K, int bs) { desFunc(in, i, out, o, ((Context) K).ek); } public void decrypt(byte[] in, int i, byte[] out, int o, Object K, int bs) { desFunc(in, i, out, o, ((Context) K).dk); } // Inner classe(s) // ========================================================================= /** * Simple wrapper class around the session keys. Package-private so TripleDES * can see it. */ final class Context { // Constants and variables // ---------------------------------------------------------------------- private static final int EXPANDED_KEY_SIZE = 32; /** The encryption key. */ int[] ek; /** The decryption key. */ int[] dk; // Constructor(s) // ---------------------------------------------------------------------- /** Default 0-arguments constructor. */ Context() { ek = new int[EXPANDED_KEY_SIZE]; dk = new int[EXPANDED_KEY_SIZE]; } // Class methods // ---------------------------------------------------------------------- // Instance methods // ---------------------------------------------------------------------- byte[] getEncryptionKeyBytes() { return toByteArray(ek); } byte[] getDecryptionKeyBytes() { return toByteArray(dk); } byte[] toByteArray(int[] k) { byte[] result = new byte[4 * k.length]; for (int i = 0, j = 0; i < k.length; i++) { result[j++] = (byte)(k[i] >>> 24); result[j++] = (byte)(k[i] >>> 16); result[j++] = (byte)(k[i] >>> 8); result[j++] = (byte) k[i]; } return result; } } }