package gnu.crypto.cipher; // ---------------------------------------------------------------------------- // $Id: Anubis.java,v 1.10 2005/10/06 04:24:14 rsdio Exp $ // // Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc. // // This file is part of GNU Crypto. // // GNU Crypto is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // GNU Crypto is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; see the file COPYING. If not, write to the // // Free Software Foundation Inc., // 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301 // USA // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give // you permission to link this library with independent modules to // produce an executable, regardless of the license terms of these // independent modules, and to copy and distribute the resulting // executable under terms of your choice, provided that you also meet, // for each linked independent module, the terms and conditions of the // license of that module. An independent module is a module which is // not derived from or based on this library. If you modify this // library, you may extend this exception to your version of the // library, but you are not obligated to do so. If you do not wish to // do so, delete this exception statement from your version. // ---------------------------------------------------------------------------- import gnu.crypto.Registry; import gnu.crypto.util.Util; //import java.io.PrintWriter; import java.security.InvalidKeyException; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; /** * <p>Anubis is a 128-bit block cipher that accepts a variable-length key. The * cipher is a uniform substitution-permutation network whose inverse only * differs from the forward operation in the key schedule. The design of both * the round transformation and the key schedule is based upon the Wide Trail * strategy and permits a wide variety of implementation trade-offs.</p> * * <p>References:</p> * * <ol> * <li><a href="http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html">The * ANUBIS Block Cipher</a>.<br> * <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and * <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li> * </ol> * * @version $Revision: 1.10 $ */ public final class Anubis extends BaseCipher { // Debugging methods and variables // ------------------------------------------------------------------------- // private static final String NAME = "anubis"; private static final boolean DEBUG = false; private static final int debuglevel = 9; // private static final PrintWriter err = new PrintWriter(System.out, true); // private static void debug(String s) { // err.println(">>> "+NAME+": "+s); // } // Constants and variables // ------------------------------------------------------------------------- private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes private static final int DEFAULT_KEY_SIZE = 16; // in bytes private static final String Sd = // p. 25 [ANUBIS] "\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"+ "\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"+ "\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"+ "\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"+ "\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"+ "\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"+ "\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"+ "\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"+ "\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"+ "\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"+ "\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"+ "\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"+ "\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"+ "\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"+ "\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"+ "\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42"; private static final byte[] S = new byte[256]; private static final int[] T0 = new int[256]; private static final int[] T1 = new int[256]; private static final int[] T2 = new int[256]; private static final int[] T3 = new int[256]; private static final int[] T4 = new int[256]; private static final int[] T5 = new int[256]; /** * Anubis round constants. This is the largest possible considering that we * always use R values, R = 8 + N, and 4 <= N <= 10. */ private static final int[] rc = new int[18]; /** * KAT vector (from ecb_vk): * I=83 * KEY=000000000000000000002000000000000000000000000000 * CT=2E66AB15773F3D32FB6C697509460DF4 */ private static final byte[] KAT_KEY = Util.toBytesFromString("000000000000000000002000000000000000000000000000"); private static final byte[] KAT_CT = Util.toBytesFromString("2E66AB15773F3D32FB6C697509460DF4"); /** caches the result of the correctness test, once executed. */ private static Boolean valid; // Static code - to initialise lookup tables ------------------------------- static { long time = System.currentTimeMillis(); int ROOT = 0x11d; // para. 2.1 [ANUBIS] int i, s, s2, s4, s6, s8, t; char c; for (i = 0; i < 256; i++) { c = Sd.charAt(i >>> 1); s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF; S[i] = (byte) s; s2 = s << 1; if (s2 > 0xFF) { s2 ^= ROOT; } s4 = s2 << 1; if (s4 > 0xFF) { s4 ^= ROOT; } s6 = s4 ^ s2; s8 = s4 << 1; if (s8 > 0xFF) { s8 ^= ROOT; } T0[i] = s << 24 | s2 << 16 | s4 << 8 | s6; T1[i] = s2 << 24 | s << 16 | s6 << 8 | s4; T2[i] = s4 << 24 | s6 << 16 | s << 8 | s2; T3[i] = s6 << 24 | s4 << 16 | s2 << 8 | s; T4[i] = s << 24 | s << 16 | s << 8 | s; T5[s] = s << 24 | s2 << 16 | s6 << 8 | s8; } // compute round constant for (i = 0, s = 0; i < 18; ) { rc[i++] = S[(s++) & 0xFF] << 24 | (S[(s++) & 0xFF] & 0xFF) << 16 | (S[(s++) & 0xFF] & 0xFF) << 8 | (S[(s++) & 0xFF] & 0xFF); } time = System.currentTimeMillis() - time; if (DEBUG && debuglevel > 8) { System.out.println("=========="); System.out.println(); System.out.println("Static data"); System.out.println(); System.out.println(); System.out.println("T0[]:"); for (i = 0; i < 64; i++) { for (t = 0; t < 4; t++) { System.out.print("0x"+Util.toString(T0[i*4+t])+", "); } System.out.println(); } System.out.println(); System.out.println("T1[]:"); for (i = 0; i < 64; i++) { for (t = 0; t < 4; t++) { System.out.print("0x"+Util.toString(T1[i*4+t])+", "); } System.out.println(); } System.out.println(); System.out.println("T2[]:"); for (i = 0; i < 64; i++) { for (t = 0; t < 4; t++) { System.out.print("0x"+Util.toString(T2[i*4+t])+", "); } System.out.println(); } System.out.println(); System.out.println("T3[]:"); for (i = 0; i < 64; i++) { for (t = 0; t < 4; t++) { System.out.print("0x"+Util.toString(T3[i*4+t])+", "); } System.out.println(); } System.out.println(); System.out.println("T4[]:"); for (i = 0; i < 64; i++) { for (t = 0; t < 4; t++) { System.out.print("0x"+Util.toString(T4[i*4+t])+", "); } System.out.println(); } System.out.println(); System.out.println("T5[]:"); for (i = 0; i < 64; i++){ for (t = 0; t < 4; t++) { System.out.print("0x"+Util.toString(T5[i*4+t])+", "); } System.out.println(); } System.out.println(); System.out.println("rc[]:"); for (i = 0; i < 18; i++) { System.out.println("0x"+Util.toString(rc[i])); } System.out.println(); System.out.println(); System.out.println("Total initialization time: "+time+" ms."); System.out.println(); } } // Constructor(s) // ------------------------------------------------------------------------- /** Trivial 0-arguments constructor. */ public Anubis() { super(Registry.ANUBIS_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); } // Class methods // ------------------------------------------------------------------------- private static void anubis(byte[] in, int i, byte[] out, int j, int[][] K) { // extract encryption round keys int R = K.length - 1; int[] Ker = K[0]; // mu function + affine key addition int a0 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[0]; int a1 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[1]; int a2 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ Ker[2]; int a3 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i ] & 0xFF) ) ^ Ker[3]; int b0, b1, b2, b3; // round function for (int r = 1; r < R; r++) { Ker = K[r]; b0 = T0[ a0 >>> 24 ] ^ T1[ a1 >>> 24 ] ^ T2[ a2 >>> 24 ] ^ T3[ a3 >>> 24 ] ^ Ker[0]; b1 = T0[(a0 >>> 16) & 0xFF] ^ T1[(a1 >>> 16) & 0xFF] ^ T2[(a2 >>> 16) & 0xFF] ^ T3[(a3 >>> 16) & 0xFF] ^ Ker[1]; b2 = T0[(a0 >>> 8) & 0xFF] ^ T1[(a1 >>> 8) & 0xFF] ^ T2[(a2 >>> 8) & 0xFF] ^ T3[(a3 >>> 8) & 0xFF] ^ Ker[2]; b3 = T0[ a0 & 0xFF] ^ T1[ a1 & 0xFF] ^ T2[ a2 & 0xFF] ^ T3[ a3 & 0xFF] ^ Ker[3]; a0 = b0; a1 = b1; a2 = b2; a3 = b3; if (DEBUG && debuglevel > 6) { System.out.println("T"+r+"="+Util.toString(a0)+Util.toString(a1) +Util.toString(a2)+Util.toString(a3)); } } // last round function Ker = K[R]; int tt = Ker[0]; out[j++] = (byte)(S[ a0 >>> 24 ] ^ (tt >>> 24)); out[j++] = (byte)(S[ a1 >>> 24 ] ^ (tt >>> 16)); out[j++] = (byte)(S[ a2 >>> 24 ] ^ (tt >>> 8)); out[j++] = (byte)(S[ a3 >>> 24 ] ^ tt ); tt = Ker[1]; out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (tt >>> 24)); out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(a2 >>> 16) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[(a3 >>> 16) & 0xFF] ^ tt ); tt = Ker[2]; out[j++] = (byte)(S[(a0 >>> 8) & 0xFF] ^ (tt >>> 24)); out[j++] = (byte)(S[(a1 >>> 8) & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[(a2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[j++] = (byte)(S[(a3 >>> 8) & 0xFF] ^ tt ); tt = Ker[3]; out[j++] = (byte)(S[ a0 & 0xFF] ^ (tt >>> 24)); out[j++] = (byte)(S[ a1 & 0xFF] ^ (tt >>> 16)); out[j++] = (byte)(S[ a2 & 0xFF] ^ (tt >>> 8)); out[j ] = (byte)(S[ a3 & 0xFF] ^ tt ); if (DEBUG && debuglevel > 6) { System.out.println("T="+Util.toString(out, j-15, 16)); System.out.println(); } } // Instance methods // ------------------------------------------------------------------------- // java.lang.Cloneable interface implementation ---------------------------- public Object clone() { Anubis result = new Anubis(); result.currentBlockSize = this.currentBlockSize; return result; } // IBlockCipherSpi interface implementation -------------------------------- public Iterator blockSizes() { ArrayList al = new ArrayList(); al.add(new Integer(DEFAULT_BLOCK_SIZE)); return Collections.unmodifiableList(al).iterator(); } public Iterator keySizes() { ArrayList al = new ArrayList(); for (int n = 4; n < 10; n++) { al.add(new Integer(n * 32 / 8)); } return Collections.unmodifiableList(al).iterator(); } /** * <p>Expands a user-supplied key material into a session key for a * designated <i>block size</i>.</p> * * @param uk the 32N-bit user-supplied key material; 4 <= N <= 10. * @param bs the desired block size in bytes. * @return an Object encapsulating the session key. * @exception IllegalArgumentException if the block size is not 16 (128-bit). * @exception InvalidKeyException if the key data is invalid. */ public Object makeKey(byte[] uk, int bs) throws InvalidKeyException { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } if (uk == null) { throw new InvalidKeyException("Empty key"); } if ((uk.length % 4) != 0) { throw new InvalidKeyException("Key is not multiple of 32-bit."); } int N = uk.length / 4; if (N < 4 || N > 10) { throw new InvalidKeyException("Key is not 32N; 4 <= N <= 10"); } int R = 8 + N; int[][] Ke = new int[R + 1][4]; // encryption round keys int[][] Kd = new int[R + 1][4]; // decryption round keys int[] tk = new int[N]; int[] kk = new int[N]; int r, i, j, k, k0, k1, k2, k3, tt; // apply mu to k0 for (r = 0, i = 0; r < N; ) { tk[r++] = uk[i++] << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); } for (r = 0; r <= R; r++) { if (r > 0) { // psi = key evolution function kk[0] = T0[(tk[ 0 ] >>> 24) ] ^ T1[(tk[N-1] >>> 16) & 0xFF] ^ T2[(tk[N-2] >>> 8) & 0xFF] ^ T3[ tk[N-3] & 0xFF]; kk[1] = T0[(tk[ 1 ] >>> 24) ] ^ T1[(tk[ 0 ] >>> 16) & 0xFF] ^ T2[(tk[N-1] >>> 8) & 0xFF] ^ T3[ tk[N-2] & 0xFF]; kk[2] = T0[(tk[ 2 ] >>> 24) ] ^ T1[(tk[ 1 ] >>> 16) & 0xFF] ^ T2[(tk[ 0 ] >>> 8) & 0xFF] ^ T3[ tk[N-1] & 0xFF]; kk[3] = T0[(tk[ 3 ] >>> 24) ] ^ T1[(tk[ 2 ] >>> 16) & 0xFF] ^ T2[(tk[ 1 ] >>> 8) & 0xFF] ^ T3[ tk[ 0 ] & 0xFF]; for (i = 4; i < N; i++) { kk[i] = T0[ tk[i ] >>> 24 ] ^ T1[(tk[i-1] >>> 16) & 0xFF] ^ T2[(tk[i-2] >>> 8) & 0xFF] ^ T3[ tk[i-3] & 0xFF]; } // apply sigma (affine addition) to round constant tk[0] = rc[r-1] ^ kk[0]; for (i = 1; i < N; i++) { tk[i] = kk[i]; } } // phi = key selection function tt = tk[N-1]; k0 = T4[ tt >>> 24 ]; k1 = T4[(tt >>> 16) & 0xFF]; k2 = T4[(tt >>> 8) & 0xFF]; k3 = T4[ tt & 0xFF]; for (k = N-2; k >= 0; k--) { tt = tk[k]; k0 = T4[ tt >>> 24 ] ^ (T5[(k0 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k0 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k0 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[ k0 & 0xFF] & 0x000000FF); k1 = T4[(tt >>> 16) & 0xFF] ^ (T5[(k1 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k1 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k1 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[ k1 & 0xFF] & 0x000000FF); k2 = T4[(tt >>> 8) & 0xFF] ^ (T5[(k2 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k2 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k2 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[(k2 ) & 0xFF] & 0x000000FF); k3 = T4[ tt & 0xFF] ^ (T5[(k3 >>> 24) & 0xFF] & 0xFF000000) ^ (T5[(k3 >>> 16) & 0xFF] & 0x00FF0000) ^ (T5[(k3 >>> 8) & 0xFF] & 0x0000FF00) ^ (T5[ k3 & 0xFF] & 0x000000FF); } Ke[r][0] = k0; Ke[r][1] = k1; Ke[r][2] = k2; Ke[r][3] = k3; if (r == 0 || r == R) { Kd[R-r][0] = k0; Kd[R-r][1] = k1; Kd[R-r][2] = k2; Kd[R-r][3] = k3; } else { Kd[R-r][0] = T0[S[ k0 >>> 24 ] & 0xFF] ^ T1[S[(k0 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k0 >>> 8) & 0xFF] & 0xFF] ^ T3[S[ k0 & 0xFF] & 0xFF]; Kd[R-r][1] = T0[S[ k1 >>> 24 ] & 0xFF] ^ T1[S[(k1 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k1 >>> 8) & 0xFF] & 0xFF] ^ T3[S[ k1 & 0xFF] & 0xFF]; Kd[R-r][2] = T0[S[ k2 >>> 24 ] & 0xFF] ^ T1[S[(k2 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k2 >>> 8) & 0xFF] & 0xFF] ^ T3[S[ k2 & 0xFF] & 0xFF]; Kd[R-r][3] = T0[S[ k3 >>> 24 ] & 0xFF] ^ T1[S[(k3 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(k3 >>> 8) & 0xFF] & 0xFF] ^ T3[S[ k3 & 0xFF] & 0xFF]; } } if (DEBUG && debuglevel > 8) { System.out.println(); System.out.println("Key schedule"); System.out.println(); System.out.println("Ke[]:"); for (r = 0; r < R+1; r++) { System.out.print("#"+r+": "); for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(Ke[r][j])+", "); System.out.println(); } System.out.println(); System.out.println("Kd[]:"); for (r = 0; r < R+1; r++) { System.out.print("#"+r+": "); for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(Kd[r][j])+", "); System.out.println(); } System.out.println(); } return new Object[] {Ke, Kd}; } public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } int[][] K = (int[][])((Object[]) k)[0]; anubis(in, i, out, j, K); } public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } int[][] K = (int[][])((Object[]) k)[1]; anubis(in, i, out, j, K); } public boolean selfTest() { if (valid == null) { boolean result = super.selfTest(); // do symmetry tests if (result) { result = testKat(KAT_KEY, KAT_CT); } valid = new Boolean(result); } return valid.booleanValue(); } }