/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.ignite.internal.processors.cache.distributed.dht; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.UUID; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.CountDownLatch; import java.util.concurrent.locks.Lock; import javax.cache.CacheException; import org.apache.ignite.Ignite; import org.apache.ignite.IgniteCache; import org.apache.ignite.cache.affinity.Affinity; import org.apache.ignite.cache.affinity.rendezvous.RendezvousAffinityFunction; import org.apache.ignite.cluster.ClusterNode; import org.apache.ignite.configuration.CacheConfiguration; import org.apache.ignite.configuration.IgniteConfiguration; import org.apache.ignite.events.Event; import org.apache.ignite.internal.IgniteInternalFuture; import org.apache.ignite.internal.IgniteKernal; import org.apache.ignite.internal.processors.cache.GridCacheContext; import org.apache.ignite.internal.util.typedef.internal.U; import org.apache.ignite.lang.IgnitePredicate; import org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi; import org.apache.ignite.spi.discovery.tcp.ipfinder.TcpDiscoveryIpFinder; import org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFinder; import org.apache.ignite.testframework.junits.common.GridCommonAbstractTest; import org.apache.ignite.transactions.Transaction; import static org.apache.ignite.cache.CacheMode.PARTITIONED; import static org.apache.ignite.cache.CacheRebalanceMode.SYNC; import static org.apache.ignite.events.EventType.EVT_NODE_FAILED; import static org.apache.ignite.events.EventType.EVT_NODE_JOINED; import static org.apache.ignite.events.EventType.EVT_NODE_LEFT; import static org.apache.ignite.transactions.TransactionConcurrency.PESSIMISTIC; import static org.apache.ignite.transactions.TransactionIsolation.REPEATABLE_READ; /** * Tests that new transactions do not start until partition exchange is completed. */ public class GridCachePartitionedTopologyChangeSelfTest extends GridCommonAbstractTest { /** Partition does not belong to node. */ private static final int PARTITION_READER = 0; /** Node is primary for partition. */ private static final int PARTITION_PRIMARY = 1; /** Node is backup for partition. */ private static final int PARTITION_BACKUP = 2; /** */ private static final TcpDiscoveryIpFinder ipFinder = new TcpDiscoveryVmIpFinder(true); /** {@inheritDoc} */ @Override protected void beforeTest() throws Exception { fail("https://issues.apache.org/jira/browse/IGNITE-807"); } /** {@inheritDoc} */ @Override protected IgniteConfiguration getConfiguration(String igniteInstanceName) throws Exception { IgniteConfiguration c = super.getConfiguration(igniteInstanceName); // Discovery. TcpDiscoverySpi disco = new TcpDiscoverySpi(); disco.setIpFinder(ipFinder); c.setDiscoverySpi(disco); CacheConfiguration cc = defaultCacheConfiguration(); cc.setCacheMode(PARTITIONED); cc.setAffinity(new RendezvousAffinityFunction(false, 18)); cc.setBackups(1); cc.setRebalanceMode(SYNC); cc.setNearConfiguration(null); c.setCacheConfiguration(cc); return c; } /** * @throws Exception If failed. */ public void testNearTxNodeJoined() throws Exception { checkTxNodeJoined(PARTITION_READER); } /** * @throws Exception If failed. */ public void testPrimaryTxNodeJoined() throws Exception { checkTxNodeJoined(PARTITION_PRIMARY); } /** * @throws Exception If failed. */ public void testBackupTxNodeJoined() throws Exception { checkTxNodeJoined(PARTITION_BACKUP); } /** * @throws Exception If failed. */ public void testNearTxNodeLeft() throws Exception { checkTxNodeLeft(PARTITION_READER); } /** * @throws Exception If failed. */ public void testPrimaryTxNodeLeft() throws Exception { // This test does not make sense because if node is primary for some partition, // it will reside on node until node leaves grid. } /** * @throws Exception If failed. */ public void testBackupTxNodeLeft() throws Exception { checkTxNodeLeft(PARTITION_BACKUP); } /** * @throws Exception If failed. */ public void testExplicitLocks() throws Exception { try { startGridsMultiThreaded(2); IgniteKernal[] nodes = new IgniteKernal[] {(IgniteKernal)grid(0), (IgniteKernal)grid(1)}; Collection<IgniteInternalFuture> futs = new ArrayList<>(); final CountDownLatch startLatch = new CountDownLatch(1); for (final IgniteKernal node : nodes) { List<Integer> parts = partitions(node, PARTITION_PRIMARY); Map<Integer, Integer> keyMap = keysFor(node, parts); for (final Integer key : keyMap.values()) { futs.add(multithreadedAsync(new Runnable() { @Override public void run() { try { Lock lock = node.cache(DEFAULT_CACHE_NAME).lock(key); lock.lock(); try { info(">>> Acquired explicit lock for key: " + key); startLatch.await(); info(">>> Acquiring explicit lock for key: " + key * 10); Lock lock10 = node.cache(DEFAULT_CACHE_NAME).lock(key * 10); lock10.lock(); try { info(">>> Releasing locks [key1=" + key + ", key2=" + key * 10 + ']'); } finally { lock10.unlock(); } } finally { lock.unlock(); } } catch (CacheException e) { info(">>> Failed to perform lock [key=" + key + ", e=" + e + ']'); } catch (InterruptedException ignored) { info(">>> Interrupted while waiting for start latch."); Thread.currentThread().interrupt(); } } }, 1)); } } IgniteInternalFuture<?> startFut = multithreadedAsync(new Runnable() { @Override public void run() { try { startGrid(2); info(">>> Started grid2."); } catch (Exception e) { info(">>> Failed to start grid: " + e); } } }, 1); U.sleep(5000); assertFalse(startFut.isDone()); info(">>> Waiting for all locks to be released."); startLatch.countDown(); for (IgniteInternalFuture fut : futs) fut.get(1000); startFut.get(); } finally { stopAllGrids(); } } /** * @throws Exception If failed. */ private void checkTxNodeJoined(int nodeType) throws Exception { startGrids(3); final IgniteKernal g0 = (IgniteKernal)grid(0); final IgniteKernal g1 = (IgniteKernal)grid(1); final IgniteKernal g2 = (IgniteKernal)grid(2); IgniteKernal[] nodes = new IgniteKernal[] {g0, g1, g2}; try { info(">>> Started nodes [g0=" + g0.localNode().id() + ", g1=" + g1.localNode().id() + ", g2=" + g2.localNode().id() + ']'); final CountDownLatch commitLatch = new CountDownLatch(1); Collection<IgniteInternalFuture> futs = new ArrayList<>(); for (final IgniteKernal node : nodes) { printDistribution(node); // Get partitions that does not reside on g0. List<Integer> parts = partitions(node, nodeType); info(">>> Partitions for node [nodeId=" + node.localNode().id() + ", parts=" + parts + ", type=" + nodeType + ']'); final Map<Integer, Integer> keysMap = keysFor(node, parts); info(">>> Generated keys for node [nodeId=" + node.localNode().id() + ", keysMap=" + keysMap + ']'); // Start tx for every key in map. for (final Integer key : keysMap.values()) { futs.add(multithreadedAsync(new Runnable() { @Override public void run() { IgniteCache<Integer, Integer> cache = node.cache(DEFAULT_CACHE_NAME); try { try (Transaction tx = node.transactions().txStart(PESSIMISTIC, REPEATABLE_READ)) { cache.put(key, key); info(">>> Locked key, waiting for latch: " + key); commitLatch.await(); tx.commit(); } } catch (CacheException e) { info("Failed to run tx for key [key=" + key + ", e=" + e + ']'); } catch (InterruptedException ignored) { Thread.currentThread().interrupt(); info("Got interrupted while waiting for commit latch: " + key); } } }, 1)); } } final CountDownLatch joinLatch = new CountDownLatch(1); g0.events().localListen(new IgnitePredicate<Event>() { @Override public boolean apply(Event evt) { assert evt.type() == EVT_NODE_JOINED; info(">>> Node has joined: " + evt.node().id()); joinLatch.countDown(); g0.events().stopLocalListen(this, EVT_NODE_JOINED); return true; } }, EVT_NODE_JOINED); // Now start new node. We do it in a separate thread since startGrid // should block until partition exchange completes. IgniteInternalFuture startFut = multithreadedAsync(new Runnable() { @Override public void run() { try { Ignite g3 = startGrid(3); info(">>> Started grid g3: " + g3.cluster().localNode().id()); } catch (Exception e) { info(">>> Failed to start 4th node: " + e); } } }, 1); joinLatch.await(); Thread.sleep(100); assertFalse("Node was able to join the grid while there exist pending transactions.", startFut.isDone()); // Now check that new transactions will wait for new topology version to become available. Collection<IgniteInternalFuture> txFuts = new ArrayList<>(nodes.length); for (final Ignite g : nodes) { txFuts.add(multithreadedAsync(new Runnable() { @Override public void run() { IgniteCache<Integer, Integer> cache = g.cache(DEFAULT_CACHE_NAME); int key = (int)Thread.currentThread().getId(); try { try (Transaction tx = g.transactions().txStart(PESSIMISTIC, REPEATABLE_READ)) { // This method should block until all previous transactions are completed. cache.put(key, key); info(">>> Acquired second lock for key: " + key); tx.commit(); } } catch (CacheException e) { info(">>> Failed to execute tx on new topology [key=" + key + ", e=" + e + ']'); } } }, 1)); } Thread.sleep(500); for (IgniteInternalFuture txFut : txFuts) assertFalse("New transaction was completed before new node joined topology", txFut.isDone()); info(">>> Committing pending transactions."); commitLatch.countDown(); for (IgniteInternalFuture fut : futs) fut.get(1000); startFut.get(1000); for (IgniteInternalFuture txFut : txFuts) txFut.get(1000); } finally { stopAllGrids(); } } /** * @throws Exception If failed. */ private void checkTxNodeLeft(int nodeType) throws Exception { startGridsMultiThreaded(4); final IgniteKernal g0 = (IgniteKernal)grid(0); final IgniteKernal g1 = (IgniteKernal)grid(1); final IgniteKernal g2 = (IgniteKernal)grid(2); final IgniteKernal g3 = (IgniteKernal)grid(3); IgniteKernal[] nodes = new IgniteKernal[] {g0, g1, g2}; final CountDownLatch commitLatch = new CountDownLatch(1); UUID leftNodeId = g3.localNode().id(); try { info(">>> Started nodes [g0=" + g0.localNode().id() + ", g1=" + g1.localNode().id() + ", g2=" + g2.localNode().id() + ", g3=" + g3.localNode().id() + ']'); Collection<IgniteInternalFuture> futs = new ArrayList<>(); printDistribution(g3); for (final IgniteKernal node : nodes) { printDistribution(node); // Get partitions that does not reside on g0. List<Integer> parts = partitions(node, nodeType); info(">>> Partitions for node [nodeId=" + node.localNode().id() + ", parts=" + parts + ", type=" + nodeType + ']'); final Map<Integer, Integer> keysMap = keysFor(node, parts); info(">>> Generated keys for node [nodeId=" + node.localNode().id() + ", keysMap=" + keysMap + ']'); // Start tx for every key in map. for (final Integer key : keysMap.values()) { futs.add(multithreadedAsync(new Runnable() { @Override public void run() { IgniteCache<Integer, Integer> cache = node.cache(DEFAULT_CACHE_NAME); try { try (Transaction tx = node.transactions().txStart(PESSIMISTIC, REPEATABLE_READ)) { cache.put(key, key); commitLatch.await(); tx.commit(); } } catch (CacheException e) { info("Failed to run tx for key [key=" + key + ", e=" + e + ']'); } catch (InterruptedException ignored) { Thread.currentThread().interrupt(); info("Got interrupted while waiting for commit latch: " + key); } } }, 1)); } } final CountDownLatch leaveLatch = new CountDownLatch(1); g0.events().localListen(new IgnitePredicate<Event>() { @Override public boolean apply(Event evt) { assert evt.type() == EVT_NODE_LEFT || evt.type() == EVT_NODE_FAILED; info(">>> Node has left: " + evt.node().id()); leaveLatch.countDown(); g0.events().stopLocalListen(this, EVT_NODE_LEFT, EVT_NODE_FAILED); return true; } }, EVT_NODE_LEFT, EVT_NODE_FAILED); // Now stop the node. stopGrid(getTestIgniteInstanceName(3), true); leaveLatch.await(); // Now check that new transactions will wait for new topology version to become available. Collection<IgniteInternalFuture> txFuts = new ArrayList<>(nodes.length); for (final Ignite g : nodes) { txFuts.add(multithreadedAsync(new Runnable() { @Override public void run() { IgniteCache<Integer, Integer> cache = g.cache(DEFAULT_CACHE_NAME); int key = (int)Thread.currentThread().getId(); try { try (Transaction tx = g.transactions().txStart(PESSIMISTIC, REPEATABLE_READ)) { // This method should block until all previous transactions are completed. cache.put(key, key); tx.commit(); } } catch (CacheException e) { info(">>> Failed to execute tx on new topology [key=" + key + ", e=" + e + ']'); } } }, 1)); } Thread.sleep(500); for (IgniteInternalFuture txFut : txFuts) assertFalse("New transaction was completed before old transactions were committed", txFut.isDone()); info(">>> Committing pending transactions."); commitLatch.countDown(); for (IgniteInternalFuture fut : futs) fut.get(1000); for (IgniteInternalFuture txFut : txFuts) txFut.get(1000); for (int i = 0; i < 3; i++) { Affinity affinity = grid(i).affinity(DEFAULT_CACHE_NAME); ConcurrentMap addedNodes = U.field(affinity, "addedNodes"); assertFalse(addedNodes.containsKey(leftNodeId)); } } finally { info(">>> Shutting down the test."); commitLatch.countDown(); U.sleep(1000); stopAllGrids(); } } /** * Prints partition distribution for node. * * @param node Node to detect partitions for. */ private void printDistribution(IgniteKernal node) { List<Integer> primary = partitions(node, PARTITION_PRIMARY); List<Integer> backup = partitions(node, PARTITION_BACKUP); List<Integer> reader = partitions(node, PARTITION_READER); info(">>> Partitions distribution calculated [nodeId=" + node.localNode().id() + ", primary=" + primary + ", backup=" + backup + ", reader=" + reader + ']'); } /** * For each partition given calculates a key that belongs to this partition. Generated keys are * in ascending order. * * @param node Node to use. * @param parts Partitions to get keys for. * @return Map from partition to key. */ private Map<Integer, Integer> keysFor(IgniteKernal node, Iterable<Integer> parts) { GridCacheContext<Object, Object> ctx = node.internalCache(DEFAULT_CACHE_NAME).context(); Map<Integer, Integer> res = new HashMap<>(); int key = 0; for (Integer part : parts) { while (ctx.affinity().partition(key) != part) key++; res.put(part, key); } return res; } /** * Gets partitions that are not resided on given node (neither as primary nor as backup). * * @param node Node to calculate partitions for. * @return List of partitions. */ private List<Integer> partitions(Ignite node, int partType) { List<Integer> res = new LinkedList<>(); Affinity<Object> aff = node.affinity(DEFAULT_CACHE_NAME); for (int partCnt = aff.partitions(), i = 0; i < partCnt; i++) { ClusterNode locNode = node.cluster().localNode(); switch (partType) { // Near, partition should not belong to node. case PARTITION_READER: { if (!aff.isPrimaryOrBackup(locNode, i)) res.add(i); break; } // Node should be primary for partition. case PARTITION_PRIMARY: { if (aff.isPrimary(locNode, i)) res.add(i); break; } // Node should be backup for partition. case PARTITION_BACKUP: { if (aff.isPrimaryOrBackup(locNode, i) && !aff.isPrimary(locNode, i)) res.add(i); break; } default: { assert false; } } } return res; } }