/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ /* * The initial version of this file was copied from JSR-166: * http://gee.cs.oswego.edu/dl/concurrency-interest/ */ package org.jsr166; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.ArrayDeque; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Enumeration; import java.util.HashMap; import java.util.Hashtable; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Queue; import java.util.Set; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.locks.ReentrantReadWriteLock; import org.apache.ignite.internal.util.tostring.GridToStringExclude; import org.apache.ignite.internal.util.typedef.internal.S; import org.jetbrains.annotations.Nullable; import static org.jsr166.ConcurrentLinkedHashMap.QueuePolicy.PER_SEGMENT_Q; import static org.jsr166.ConcurrentLinkedHashMap.QueuePolicy.PER_SEGMENT_Q_OPTIMIZED_RMV; import static org.jsr166.ConcurrentLinkedHashMap.QueuePolicy.SINGLE_Q; /** * A hash table supporting full concurrency of retrievals and * adjustable expected concurrency for updates. This class obeys the * same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of * <tt>Hashtable</tt>. However, even though all operations are * thread-safe, retrieval operations do <em>not</em> entail locking, * and there is <em>not</em> any support for locking the entire table * in a way that prevents all access. This class is fully * interoperable with <tt>Hashtable</tt> in programs that rely on its * thread safety but not on its synchronization details. * * <p> Retrieval operations (including <tt>get</tt>) generally do not * block, so may overlap with update operations (including * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results * of the most recently <em>completed</em> update operations holding * upon their onset. For aggregate operations such as <tt>putAll</tt> * and <tt>clear</tt>, concurrent retrievals may reflect insertion or * removal of only some entries. Similarly, Iterators and * Enumerations return elements reflecting the state of the hash table * at some point at or since the creation of the iterator/enumeration. * They do <em>not</em> throw {@link ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a time. * * <p> The allowed concurrency among update operations is guided by * the optional <tt>concurrencyLevel</tt> constructor argument * (default <tt>16</tt>), which is used as a hint for internal sizing. The * table is internally partitioned to try to permit the indicated * number of concurrent updates without contention. Because placement * in hash tables is essentially random, the actual concurrency will * vary. Ideally, you should choose a value to accommodate as many * threads as will ever concurrently modify the table. Using a * significantly higher value than you need can waste space and time, * and a significantly lower value can lead to thread contention. But * overestimates and underestimates within an order of magnitude do * not usually have much noticeable impact. A value of one is * appropriate when it is known that only one thread will modify and * all others will only read. Also, resizing this or any other kind of * hash table is a relatively slow operation, so, when possible, it is * a good idea to provide estimates of expected table sizes in * constructors. * * <p/> This implementation differs from * <tt>HashMap</tt> in that it maintains a doubly-linked list running through * all of its entries. This linked list defines the iteration ordering, * which is the order in which keys were inserted into the map * (<i>insertion-order</i>). * * <p> NOTE: Access order is not supported by this map. * * Note that insertion order is not affected * if a key is <i>re-inserted</i> into the map. (A key <tt>k</tt> is * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to * the invocation.) * * <p>An optional {@code maxCap} may be passed to the map constructor to * create bounded map that will remove stale mappings automatically when new mappings * are added to the map. * * <p/>When iterating over the key set in insertion order one should note that iterator * will see all removes done since the iterator was created, but will see <b>no</b> * inserts to map. * * <p>This class and its views and iterators implement all of the * <em>optional</em> methods of the {@link Map} and {@link Iterator} * interfaces. * * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class * does <em>not</em> allow <tt>null</tt> to be used as a key or value. * * @author Doug Lea * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values */ @SuppressWarnings("NullableProblems") public class ConcurrentLinkedHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> { /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, * used when not otherwise specified in a constructor. */ public static final int DFLT_INIT_CAP = 16; /** * The default load factor for this table, used when not * otherwise specified in a constructor. */ public static final float DFLT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not * otherwise specified in a constructor. */ public static final int DFLT_CONCUR_LVL = 16; /** * The maximum capacity, used if a higher value is implicitly * specified by either of the constructors with arguments. MUST * be a power of two <= 1<<30 to ensure that entries are indexable * using ints. */ public static final int MAX_CAP_LIMIT = 1 << 30; /** * The maximum number of segments to allow; used to bound * constructor arguments. */ public static final int MAX_SEGS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in {@link #size} and {@link #containsValue} * methods before resorting to locking. This is used to avoid * unbounded retries if tables undergo continuous modification * which would make it impossible to obtain an accurate result. */ public static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a * key's hash code are used to choose the segment. */ private final int segmentMask; /** Shift value for indexing within segments. */ private final int segmentShift; /** The segments, each of which is a specialized hash table. */ private final Segment<K, V>[] segments; /** Key set. */ private Set<K> keySet; /** Key set. */ private Set<K> descKeySet; /** Entry set */ private Set<Map.Entry<K, V>> entrySet; /** Entry set in descending order. */ private Set<Map.Entry<K, V>> descEntrySet; /** Values collection. */ private Collection<V> vals; /** Values collection in descending order. */ private Collection<V> descVals; /** Queue containing order of entries. */ private final ConcurrentLinkedDeque8<HashEntry<K, V>> entryQ; /** Atomic variable containing map size. */ private final LongAdder8 size = new LongAdder8(); /** */ private final LongAdder8 modCnt = new LongAdder8(); /** */ private final int maxCap; /** */ private final QueuePolicy qPlc; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because ConcurrentHashMap uses power-of-two length hash tables, * that otherwise encounter collisions for hashCodes that do not * differ in lower or upper bits. * * @param h Input hash. * @return Hash. */ private static int hash(int h) { // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/ // Despite two multiplies, this is often faster than others // with comparable bit-spread properties. h ^= h >>> 16; h *= 0x85ebca6b; h ^= h >>> 13; h *= 0xc2b2ae35; return ((h >>> 16) ^ h); } /** * Returns the segment that should be used for key with given hash. * * @param hash the hash code for the key * @return the segment */ private Segment<K, V> segmentFor(int hash) { return segments[(hash >>> segmentShift) & segmentMask]; } /* ---------------- Inner Classes -------------- */ /** * ConcurrentHashMap list entry. Note that this is never exported * out as a user-visible Map.Entry. * * Because the value field is volatile, not final, it is legal wrt * the Java Memory Model for an unsynchronized reader to see null * instead of initial value when read via a data race. Although a * reordering leading to this is not likely to ever actually * occur, the Segment.readValueUnderLock method is used as a * snapshot in case a null (pre-initialized) value is ever seen in * an unsynchronized access method. */ @SuppressWarnings({"PublicInnerClass"}) public static final class HashEntry<K, V> { /** Key. */ private final K key; /** Hash of the key after {@code hash()} method is applied. */ private final int hash; /** Value. */ private volatile V val; /** Reference to a node in queue for fast removal operations. */ @GridToStringExclude private volatile ConcurrentLinkedDeque8.Node node; /** Modification count of the map for duplicates exclusion. */ private volatile int modCnt; /** Link to the next entry in a bucket */ @GridToStringExclude private final HashEntry<K, V> next; /** * @param key Key. * @param hash Key hash. * @param next Link to next. * @param val Value. */ HashEntry(K key, int hash, HashEntry<K, V> next, V val) { this.key = key; this.hash = hash; this.next = next; this.val = val; } /** * @param key Key. * @param hash Key hash. * @param next Link to next. * @param val Value. * @param node Queue node. * @param modCnt Mod count. */ HashEntry(K key, int hash, HashEntry<K, V> next, V val, ConcurrentLinkedDeque8.Node node, int modCnt) { this.key = key; this.hash = hash; this.next = next; this.val = val; this.node = node; this.modCnt = modCnt; } /** * Returns key of this entry. * * @return Key. */ public K getKey() { return key; } /** * Return value of this entry. * * @return Value. */ public V getValue() { return val; } /** * Creates new array of entries. * * @param i Size of array. * @param <K> Key type. * @param <V> Value type. * @return Empty array. */ @SuppressWarnings("unchecked") static <K, V> HashEntry<K, V>[] newArray(int i) { return new HashEntry[i]; } /** {@inheritDoc} */ @Override public String toString() { return S.toString(HashEntry.class, this, "key", key, "val", val); } } /** * Segments are specialized versions of hash tables. This * subclasses from ReentrantLock opportunistically, just to * simplify some locking and avoid separate construction. */ @SuppressWarnings({"TransientFieldNotInitialized"}) private final class Segment<K, V> extends ReentrantReadWriteLock { /* * Segments maintain a table of entry lists that are ALWAYS * kept in a consistent state, so can be read without locking. * Next fields of nodes are immutable (final). All list * additions are performed at the front of each bin. This * makes it easy to check changes, and also fast to traverse. * When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables * since the bin lists tend to be short. (The average length * is less than two for the default load factor threshold.) * * Read operations can thus proceed without locking, but rely * on selected uses of volatiles to ensure that completed * write operations performed by other threads are * noticed. For most purposes, the "count" field, tracking the * number of elements, serves as that volatile variable * ensuring visibility. This is convenient because this field * needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the * count field are marked in code comments. */ /** The number of elements in this segment's region. */ private transient volatile int cnt; /** * Number of updates that alter the size of the table. This is * used during bulk-read methods to make sure they see a * consistent snapshot: If modCounts change during a traversal * of segments computing size or checking containsValue, then * we might have an inconsistent view of state so (usually) * must retry. */ private transient int modCnt; /** * The table is rehashed when its size exceeds this threshold. * (The value of this field is always <tt>(int)(capacity * * loadFactor)</tt>.) */ private transient int threshold; /** The per-segment table. */ private transient volatile HashEntry<K, V>[] tbl; /** * The load factor for the hash table. Even though this value * is same for all segments, it is replicated to avoid needing * links to outer object. */ private final float loadFactor; /** */ private final Queue<HashEntry<K, V>> segEntryQ; /** * @param initCap Segment initial capacity. * @param loadFactor Segment load factor, */ Segment(int initCap, float loadFactor) { this.loadFactor = loadFactor; segEntryQ = qPlc == PER_SEGMENT_Q ? new ArrayDeque<HashEntry<K, V>>() : qPlc == PER_SEGMENT_Q_OPTIMIZED_RMV ? new ConcurrentLinkedDeque8<HashEntry<K, V>>() : null; setTable(HashEntry.<K, V>newArray(initCap)); } /** * Sets table to new HashEntry array. * Call only while holding lock or in constructor. * * @param newTbl New hash table */ void setTable(HashEntry<K, V>[] newTbl) { threshold = (int)(newTbl.length * loadFactor); tbl = newTbl; } /** * Returns properly casted first entry of bin for given hash. * * @param hash Hash of the key. * @return Head of bin's linked list. */ HashEntry<K, V> getFirst(int hash) { HashEntry<K, V>[] tab = tbl; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value * field ever appears to be null. This is possible only if a * compiler happens to reorder a HashEntry initialization with * its table assignment, which is legal under memory model * but is not known to ever occur. * * @param e Entry that needs to be read. * @return Value of entry. */ V readValueUnderLock(HashEntry<K, V> e) { readLock().lock(); try { return e.val; } finally { readLock().unlock(); } } /* Specialized implementations of map methods */ /** * Performs lock-free read of value for given key. * * @param key Key to be read. * @param hash Hash of the key * @return Stored value */ V get(Object key, int hash) { if (cnt != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.val; if (v != null) return v; v = readValueUnderLock(e); return v; // recheck } e = e.next; } } return null; } /** * Performs lock-based read of value for given key. * In contrast with {@link #get(Object, int)} it is guaranteed * to be consistent with order-based iterators. * * @param key Key to be read. * @param hash Hash of the key * @return Stored value */ V getSafe(Object key, int hash) { readLock().lock(); try { HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) return e.val; e = e.next; } return null; } finally { readLock().unlock(); } } /** * Performs lock-free check of key presence. * * @param key Key to lookup. * @param hash Hash of the key. * @return {@code true} if segment contains this key. */ boolean containsKey(Object key, int hash) { if (cnt != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) return true; e = e.next; } } return false; } /** * Performs lock-free check of value presence. * * @param val Value. * @return {@code true} if segment contains this key. */ @SuppressWarnings("ForLoopReplaceableByForEach") boolean containsValue(Object val) { if (cnt != 0) { // read-volatile HashEntry<K, V>[] tab = tbl; int len = tab.length; for (int i = 0 ; i < len; i++) { for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { V v = e.val; if (v == null) // recheck v = readValueUnderLock(e); if (val.equals(v)) return true; } } } return false; } /** * Performs value replacement for a given key with old value check. * * @param key Key to replace. * @param hash Hash of the key. * @param oldVal Old value. * @param newVal New value * @return {@code true} If value was replaced. */ @SuppressWarnings({"unchecked"}) boolean replace(K key, int hash, V oldVal, V newVal) { writeLock().lock(); boolean replaced = false; try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; if (e != null && oldVal.equals(e.val)) { replaced = true; e.val = newVal; } } finally { writeLock().unlock(); } return replaced; } /** * Performs value replacement for a given key with old value check. * * @param key Key to replace. * @param hash Hash of the key. * @param oldVal Old value. * @param newVal New value * @return {@code oldVal}, if value was replaced, non-null object if map * contained some other value and {@code null} if there were no such key. */ @SuppressWarnings({"unchecked"}) V replacex(K key, int hash, V oldVal, V newVal) { writeLock().lock(); V replaced = null; try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; if (e != null) { if (oldVal.equals(e.val)) { replaced = oldVal; e.val = newVal; } else replaced = e.val; } } finally { writeLock().unlock(); } return replaced; } @SuppressWarnings({"unchecked"}) V replace(K key, int hash, V newVal) { writeLock().lock(); V oldVal = null; try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; if (e != null) { oldVal = e.val; e.val = newVal; } } finally { writeLock().unlock(); } return oldVal; } @SuppressWarnings({"unchecked"}) V put(K key, int hash, V val, boolean onlyIfAbsent) { writeLock().lock(); V oldVal; boolean added = false; try { int c = cnt; if (c++ > threshold) // ensure capacity rehash(); HashEntry<K, V>[] tab = tbl; int idx = hash & (tab.length - 1); HashEntry<K, V> first = tab[idx]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; boolean modified = false; if (e != null) { oldVal = e.val; if (!onlyIfAbsent) { e.val = val; ConcurrentLinkedDeque8.Node node = e.node; if (node != null) { HashEntry<K, V> qEntry = (HashEntry<K, V>)node.item(); if (qEntry != null && qEntry != e) qEntry.val = val; } modified = true; } } else { oldVal = null; ++modCnt; size.increment(); e = tab[idx] = new HashEntry<>(key, hash, first, val); ConcurrentLinkedHashMap.this.modCnt.increment(); e.modCnt = ConcurrentLinkedHashMap.this.modCnt.intValue(); cnt = c; // write-volatile added = true; } assert !(added && modified); if (added) { switch (qPlc) { case PER_SEGMENT_Q_OPTIMIZED_RMV: recordInsert(e, (ConcurrentLinkedDeque8)segEntryQ); if (maxCap > 0) checkRemoveEldestEntrySegment(c); break; case PER_SEGMENT_Q: segEntryQ.add(e); if (maxCap > 0) checkRemoveEldestEntrySegment(c); break; default: assert qPlc == SINGLE_Q; recordInsert(e, entryQ); } } } finally { writeLock().unlock(); } if (qPlc == SINGLE_Q && added && maxCap > 0) checkRemoveEldestEntry(); return oldVal; } /** * @param cnt Segment entries count. */ private void checkRemoveEldestEntrySegment(int cnt) { assert maxCap > 0; if (cnt - ((maxCap / segments.length) + 1) > 0) { HashEntry<K, V> e0 = segEntryQ.poll(); assert e0 != null; removeLocked( e0.key, e0.hash, null /*no need to compare*/, false); } } /** * This method is called under the segment lock. */ @SuppressWarnings({"ForLoopReplaceableByForEach", "unchecked"}) void rehash() { HashEntry<K, V>[] oldTbl = tbl; int oldCap = oldTbl.length; if (oldCap >= MAX_CAP_LIMIT) return; /* * Reclassify nodes in each list to new Map. Because we are * using power-of-two expansion, the elements from each bin * must either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next * fields won't change. Statistically, at the default * threshold, only about one-sixth of them need cloning when * a table doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by any * reader thread that may be in the midst of traversing table * right now. */ int c = cnt; HashEntry<K, V>[] newTbl = HashEntry.newArray(oldCap << 1); threshold = (int)(newTbl.length * loadFactor); int sizeMask = newTbl.length - 1; for (int i = 0; i < oldCap; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry<K, V> e = oldTbl[i]; if (e != null) { HashEntry<K, V> next = e.next; int idx = e.hash & sizeMask; // Single node on list if (next == null) newTbl[idx] = e; else { // Reuse trailing consecutive sequence at same slot HashEntry<K, V> lastRun = e; int lastIdx = idx; for (HashEntry<K, V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTbl[lastIdx] = lastRun; // Clone all remaining nodes for (HashEntry<K, V> p = e; p != lastRun; p = p.next) { int k = p.hash & sizeMask; HashEntry<K, V> n = newTbl[k]; HashEntry<K, V> e0 = new HashEntry<>(p.key, p.hash, n, p.val, p.node, p.modCnt); newTbl[k] = e0; } } } } cnt = c; tbl = newTbl; } /** * Remove; match on key only if value null, else match both. * * @param key Key to be removed. * @param hash Hash of the key. * @param val Value to match. * @param cleanupQ {@code True} if need to cleanup queue. * @return Old value, if entry existed, {@code null} otherwise. */ V remove(Object key, int hash, Object val, boolean cleanupQ) { writeLock().lock(); try { return removeLocked(key, hash, val, cleanupQ); } finally { writeLock().unlock(); } } /** * Locked version of remove. Match on key only if value null, else match both. * * @param key Key to be removed. * @param hash Hash of the key. * @param val Value to match. * @param cleanupQ {@code True} if need to cleanup queue. * @return Old value, if entry existed, {@code null} otherwise. */ @SuppressWarnings({"unchecked"}) V removeLocked(Object key, int hash, Object val, boolean cleanupQ) { int c = cnt - 1; HashEntry<K, V>[] tab = tbl; int idx = hash & (tab.length - 1); HashEntry<K, V> first = tab[idx]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldVal = null; if (e != null) { V v = e.val; if (val == null || val.equals(v)) { oldVal = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCnt; ConcurrentLinkedHashMap.this.modCnt.increment(); HashEntry<K, V> newFirst = e.next; for (HashEntry<K, V> p = first; p != e; p = p.next) newFirst = new HashEntry<>(p.key, p.hash, newFirst, p.val, p.node, p.modCnt); tab[idx] = newFirst; cnt = c; // write-volatile size.decrement(); } } if (oldVal != null && cleanupQ) { switch (qPlc) { case PER_SEGMENT_Q_OPTIMIZED_RMV: ((ConcurrentLinkedDeque8)segEntryQ).unlinkx(e.node); e.node = null; break; case PER_SEGMENT_Q: // Linear time method call. segEntryQ.remove(e); break; default: assert qPlc == SINGLE_Q; entryQ.unlinkx(e.node); e.node = null; } } return oldVal; } /** * */ void clear() { if (cnt != 0) { writeLock().lock(); try { HashEntry<K, V>[] tab = tbl; for (int i = 0; i < tab.length ; i++) tab[i] = null; ++modCnt; cnt = 0; // write-volatile } finally { writeLock().unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial * capacity, load factor, concurrency level and max capacity. * * @param initCap the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurLvl the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @param maxCap Max capacity ({@code 0} for unbounded). * @param qPlc Queue policy. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurLvl are * non-positive. */ @SuppressWarnings({"unchecked"}) public ConcurrentLinkedHashMap(int initCap, float loadFactor, int concurLvl, int maxCap, QueuePolicy qPlc) { if (!(loadFactor > 0) || initCap < 0 || concurLvl <= 0) throw new IllegalArgumentException(); if (concurLvl > MAX_SEGS) concurLvl = MAX_SEGS; this.maxCap = maxCap; this.qPlc = qPlc; entryQ = qPlc == SINGLE_Q ? new ConcurrentLinkedDeque8<HashEntry<K, V>>() : null; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurLvl) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; segments = new Segment[ssize]; if (initCap > MAX_CAP_LIMIT) initCap = MAX_CAP_LIMIT; int c = initCap / ssize; if (c * ssize < initCap) ++c; int cap = 1; while (cap < c) cap <<= 1; for (int i = 0; i < segments.length; ++i) segments[i] = new Segment<>(cap, loadFactor); } /** * Creates a new, empty map with the specified initial * capacity, load factor, concurrency level and max capacity. * * @param initCap the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurLvl the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @param maxCap Max capacity ({@code 0} for unbounded). * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurLvl are * non-positive. */ public ConcurrentLinkedHashMap(int initCap, float loadFactor, int concurLvl, int maxCap) { this(initCap, loadFactor, concurLvl, maxCap, SINGLE_Q); } /** * Creates a new, empty map with the specified initial * capacity, load factor and concurrency level. * * @param initCap the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurLvl the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurLvl are * non-positive. */ @SuppressWarnings({"unchecked"}) public ConcurrentLinkedHashMap(int initCap, float loadFactor, int concurLvl) { this(initCap, loadFactor, concurLvl, 0); } /** * Creates a new, empty map with the specified initial capacity * and load factor and with the default concurrencyLevel (16). * * @param initCap The implementation performs internal * sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is non-positive * * @since 1.6 */ public ConcurrentLinkedHashMap(int initCap, float loadFactor) { this(initCap, loadFactor, DFLT_CONCUR_LVL); } /** * Creates a new, empty map with the specified initial capacity, * and with default load factor (0.75) and concurrencyLevel (16). * * @param initCap the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative. */ public ConcurrentLinkedHashMap(int initCap) { this(initCap, DFLT_LOAD_FACTOR, DFLT_CONCUR_LVL); } /** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentLinkedHashMap() { this(DFLT_INIT_CAP, DFLT_LOAD_FACTOR, DFLT_CONCUR_LVL); } /** * Creates a new map with the same mappings as the given map. * The map is created with a capacity of 1.5 times the number * of mappings in the given map or 16 (whichever is greater), * and a default load factor (0.75) and concurrencyLevel (16). * * @param m the map */ public ConcurrentLinkedHashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DFLT_LOAD_FACTOR) + 1, DFLT_INIT_CAP), DFLT_LOAD_FACTOR, DFLT_CONCUR_LVL); putAll(m); } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings. */ @Override public boolean isEmpty() { Segment<K, V>[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA * problems in which an element in one segment was added and * in another removed during traversal, in which case the * table was never actually empty at any point. Note the * similar use of modCounts in the size() and containsValue() * methods, which are the only other methods also susceptible * to ABA problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].cnt != 0) return false; else mcsum += mc[i] = segments[i].modCnt; } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].cnt != 0 || mc[i] != segments[i].modCnt) return false; } } return true; } /** * Returns the number of key-value mappings in this map. If the * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns * <tt>Integer.MAX_VALUE</tt>. * * @return the number of key-value mappings in this map */ @SuppressWarnings({"LockAcquiredButNotSafelyReleased"}) @Override public int size() { Segment<K, V>[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].cnt; mcsum += mc[i] = segments[i].modCnt; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].cnt; if (mc[i] != segments[i].modCnt) { check = -1; // force retry break; } } } if (check == sum) break; } if (check != sum) { // Resort to locking all segments sum = 0; for (Segment<K, V> segment : segments) segment.readLock().lock(); for (Segment<K, V> segment : segments) sum += segment.cnt; for (Segment<K, V> segment : segments) segment.readLock().unlock(); } return sum > Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)sum; } /** * @return The number of key-value mappings in this map (constant-time). */ public int sizex() { int i = size.intValue(); return i > 0 ? i : 0; } /** * @return <tt>true</tt> if this map contains no key-value mappings */ public boolean isEmptyx() { return sizex() == 0; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ @Override public V get(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).get(key, hash); } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * In contrast with {@link #get(Object)} this method acquires * read lock on segment where the key is mapped. * * @throws NullPointerException if the specified key is null */ public V getSafe(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).getSafe(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return <tt>true</tt> if and only if the specified object * is a key in this table, as determined by the * <tt>equals</tt> method; <tt>false</tt> otherwise. * @throws NullPointerException if the specified key is null */ @Override public boolean containsKey(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).containsKey(key, hash); } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. Note: This method requires a full internal * traversal of the hash table, and so is much slower than * method <tt>containsKey</tt>. * * @param val value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value * @throws NullPointerException if the specified value is null */ @SuppressWarnings({"LockAcquiredButNotSafelyReleased"}) @Override public boolean containsValue(Object val) { if (val == null) throw new NullPointerException(); // See explanation of modCount use above Segment<K, V>[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int mcsum = 0; for (int i = 0; i < segments.length; ++i) { mcsum += mc[i] = segments[i].modCnt; if (segments[i].containsValue(val)) return true; } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (mc[i] != segments[i].modCnt) { cleanSweep = false; break; } } } if (cleanSweep) return false; } // Resort to locking all segments for (Segment<K, V> segment : segments) segment.readLock().lock(); boolean found = false; try { for (Segment<K, V> segment : segments) { if (segment.containsValue(val)) { found = true; break; } } } finally { for (Segment<K, V> segment : segments) segment.readLock().unlock(); } return found; } /** * Legacy method testing if some key maps into the specified value * in this table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure * full compatibility with class {@link java.util.Hashtable}, * which supported this method prior to introduction of the * Java Collections framework. * @param val a value to search for * @return <tt>true</tt> if and only if some key maps to the * <tt>value</tt> argument in this table as * determined by the <tt>equals</tt> method; * <tt>false</tt> otherwise * @throws NullPointerException if the specified value is null */ public boolean contains(Object val) { return containsValue(val); } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * * <p> The value can be retrieved by calling the <tt>get</tt> method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param val value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key or value is null */ @Override public V put(K key, V val) { if (val == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, val, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or <tt>null</tt> if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @Override public V putIfAbsent(K key, V val) { if (val == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, val, true); } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ @Override public void putAll(Map<? extends K, ? extends V> m) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key is null */ @Override public V remove(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).remove(key, hash, null, true); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ @SuppressWarnings("NullableProblems") @Override public boolean remove(Object key, Object val) { int hash = hash(key.hashCode()); return val != null && segmentFor(hash).remove(key, hash, val, true) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ @SuppressWarnings("NullableProblems") @Override public boolean replace(K key, V oldVal, V newVal) { if (oldVal == null || newVal == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, oldVal, newVal); } /** * Replaces the entry for a key only if currently mapped to a given value. * This is equivalent to * <pre> * if (map.containsKey(key)) { * if (map.get(key).equals(oldValue)) { * map.put(key, newValue); * return oldValue; * } else * return map.get(key); * } else return null;</pre> * except that the action is performed atomically. * * @param key key with which the specified value is associated * @param oldVal value expected to be associated with the specified key * @param newVal value to be associated with the specified key * @return {@code oldVal}, if value was replaced, non-null previous value if map * contained some other value and {@code null} if there were no such key. */ public V replacex(K key, V oldVal, V newVal) { if (oldVal == null || newVal == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replacex(key, hash, oldVal, newVal); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or <tt>null</tt> if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @SuppressWarnings("NullableProblems") @Override public V replace(K key, V val) { if (val == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, val); } /** * Removes all of the mappings from this map. */ @Override public void clear() { for (Segment<K, V> segment : segments) segment.clear(); } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ @Override public Set<K> keySet() { Set<K> ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Set} view of the keys contained in this map * in descending order. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set<K> descendingKeySet() { Set<K> ks = descKeySet; return (ks != null) ? ks : (descKeySet = new KeySetDescending()); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. * * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ @Override public Collection<V> values() { Collection<V> vs = vals; return (vs != null) ? vs : (vals = new Values()); } /** * Returns a {@link Collection} view of the values contained in this map * in descending order. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. * * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Collection<V> descendingValues() { Collection<V> vs = descVals; return (vs != null) ? vs : (descVals = new ValuesDescending()); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ @Override public Set<Map.Entry<K, V>> entrySet() { Set<Map.Entry<K, V>> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns a {@link Set} view of the mappings contained in this map * in descending order. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator * that will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Set<Map.Entry<K, V>> descendingEntrySet() { Set<Map.Entry<K, V>> es = descEntrySet; return (es != null) ? es : (descEntrySet = new EntrySetDescending()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table. * @see #keySet() */ public Enumeration<K> keys() { return new KeyIterator(true); } /** * Returns an enumeration of the keys in this table in descending order. * * @return an enumeration of the keys in this table in descending order. * @see #keySet() */ public Enumeration<K> descendingKeys() { return new KeyIterator(false); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table. * @see #values() */ public Enumeration<V> elements() { return new ValueIterator(true); } /** * Returns an enumeration of the values in this table in descending order. * * @return an enumeration of the values in this table in descending order. * @see #values() */ public Enumeration<V> descendingElements() { return new ValueIterator(false); } /** * This method is called by hash map whenever a new entry is inserted into map. * <p> * This method is called outside the segment-protection lock and may be called concurrently. * * @param e The new inserted entry. */ @SuppressWarnings({"unchecked"}) private void recordInsert(HashEntry e, ConcurrentLinkedDeque8 q) { e.node = q.addx(e); } /** * Concurrently removes eldest entry from the map. */ private void checkRemoveEldestEntry() { assert maxCap > 0; assert qPlc == SINGLE_Q; int sizex = sizex(); for (int i = maxCap; i < sizex; i++) { HashEntry<K, V> e = entryQ.poll(); if (e != null) segmentFor(e.hash).remove(e.key, e.hash, e.val, false); else return; if (sizex() <= maxCap) return; } } /** * This method is intended for test purposes only. * * @return Queue. */ public ConcurrentLinkedDeque8<HashEntry<K, V>> queue() { return entryQ; } /** * @return Queue policy. */ public QueuePolicy policy() { return qPlc; } /** * Class implementing iteration over map entries. */ private abstract class HashIterator { /** Underlying collection iterator. */ private Iterator<HashEntry<K, V>> delegate; /** Last returned entry, used in {@link #remove()} method. */ private HashEntry<K, V> lastReturned; /** Next entry to return */ private HashEntry<K, V> nextEntry; /** The map modification count at the creation time. */ private int modCnt; /** * @param asc {@code True} for ascending iterator. */ HashIterator(boolean asc) { modCnt = ConcurrentLinkedHashMap.this.modCnt.intValue(); // Init delegate. switch (qPlc) { case SINGLE_Q: delegate = asc ? entryQ.iterator() : entryQ.descendingIterator(); break; default: assert qPlc == PER_SEGMENT_Q || qPlc == PER_SEGMENT_Q_OPTIMIZED_RMV : qPlc; delegate = new HashIteratorDelegate(); } advance(); } /** * @return {@code true} If iterator has elements to iterate. */ public boolean hasMoreElements() { return hasNext(); } /** * @return {@code true} If iterator has elements to iterate. */ public boolean hasNext() { return nextEntry != null; } /** * @return Next entry. */ HashEntry<K, V> nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); lastReturned = nextEntry; advance(); return lastReturned; } /** * Removes entry returned by {@link #nextEntry()}. */ public void remove() { if (lastReturned == null) throw new IllegalStateException(); ConcurrentLinkedHashMap.this.remove(lastReturned.key); lastReturned = null; } /** * Moves iterator to the next position. */ private void advance() { nextEntry = null; while (delegate.hasNext()) { HashEntry<K, V> n = delegate.next(); if (n.modCnt <= modCnt) { nextEntry = n; break; } } } } /** * */ private class HashIteratorDelegate implements Iterator<HashEntry<K, V>> { /** */ private HashEntry<K, V>[] curTbl; /** */ private int nextSegIdx; /** */ private int nextTblIdx; /** */ private HashEntry<K, V> next; /** */ private HashEntry<K, V> next0; /** */ private HashEntry<K, V> cur; /** * */ public HashIteratorDelegate() { nextSegIdx = segments.length - 1; nextTblIdx = -1; advance(); } /** * */ private void advance() { if (next0 != null && advanceInBucket(next0, true)) return; while (nextTblIdx >= 0) { HashEntry<K, V> bucket = curTbl[nextTblIdx--]; if (bucket != null && advanceInBucket(bucket, false)) return; } while (nextSegIdx >= 0) { int nextSegIdx0 = nextSegIdx--; Segment seg = segments[nextSegIdx0]; curTbl = seg.tbl; for (int j = curTbl.length - 1; j >= 0; --j) { HashEntry<K, V> bucket = curTbl[j]; if (bucket != null && advanceInBucket(bucket, false)) { nextTblIdx = j - 1; return; } } } } /** * @param e Current next. * @return {@code True} if advance succeeded. */ @SuppressWarnings( {"unchecked"}) private boolean advanceInBucket(@Nullable HashEntry<K, V> e, boolean skipFirst) { if (e == null) return false; next0 = e; do { if (!skipFirst) { next = next0; return true; } else skipFirst = false; } while ((next0 = next0.next) != null); assert next0 == null; next = null; return false; } /** {@inheritDoc} */ @Override public boolean hasNext() { return next != null; } /** {@inheritDoc} */ @Override public HashEntry<K, V> next() { HashEntry<K, V> e = next; if (e == null) throw new NoSuchElementException(); advance(); return e; } /** {@inheritDoc} */ @Override public void remove() { if (cur == null) throw new IllegalStateException(); HashEntry<K, V> e = cur; cur = null; ConcurrentLinkedHashMap.this.remove(e.key, e.val); } } /** * Key iterator implementation. */ private final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> { /** * @param asc {@code True} for ascending iterator. */ private KeyIterator(boolean asc) { super(asc); } /** {@inheritDoc} */ @Override public K next() { return nextEntry().key; } /** {@inheritDoc} */ @Override public K nextElement() { return nextEntry().key; } } /** * Value iterator implementation. */ private final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> { /** * @param asc {@code True} for ascending iterator. */ private ValueIterator(boolean asc) { super(asc); } /** {@inheritDoc} */ @Override public V next() { return nextEntry().val; } /** {@inheritDoc} */ @Override public V nextElement() { return nextEntry().val; } } /** * Custom Entry class used by EntryIterator.next(), that relays * setValue changes to the underlying map. */ private final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> { /** * @param k Key * @param v Value */ WriteThroughEntry(K k, V v) { super(k,v); } /** * Set our entry's value and write through to the map. The * value to return is somewhat arbitrary here. Since a * WriteThroughEntry does not necessarily track asynchronous * changes, the most recent "previous" value could be * different from what we return (or could even have been * removed in which case the put will re-establish). We do not * and cannot guarantee more. */ @Override public V setValue(V val) { if (val == null) throw new NullPointerException(); V v = super.setValue(val); put(getKey(), val); return v; } } /** * Entry iterator implementation. */ private final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> { /** * @param asc {@code True} for ascending iterator. */ private EntryIterator(boolean asc) { super(asc); } /** {@inheritDoc} */ @Override public Map.Entry<K, V> next() { HashEntry<K, V> e = nextEntry(); return new WriteThroughEntry(e.key, e.val); } } /** * Key set of the map. */ private abstract class AbstractKeySet extends AbstractSet<K> { /** {@inheritDoc} */ @Override public int size() { return ConcurrentLinkedHashMap.this.size(); } /** {@inheritDoc} */ @Override public boolean contains(Object o) { return containsKey(o); } /** {@inheritDoc} */ @Override public boolean remove(Object o) { return ConcurrentLinkedHashMap.this.remove(o) != null; } /** {@inheritDoc} */ @Override public void clear() { ConcurrentLinkedHashMap.this.clear(); } } /** * Key set of the map. */ private final class KeySet extends AbstractKeySet { /** {@inheritDoc} */ @Override public Iterator<K> iterator() { return new KeyIterator(true); } } /** * Key set of the map. */ private final class KeySetDescending extends AbstractKeySet { /** {@inheritDoc} */ @Override public Iterator<K> iterator() { return new KeyIterator(false); } } /** * Values collection of the map. */ private abstract class AbstractValues extends AbstractCollection<V> { /** {@inheritDoc} */ @Override public int size() { return ConcurrentLinkedHashMap.this.size(); } /** {@inheritDoc} */ @Override public boolean contains(Object o) { return containsValue(o); } /** {@inheritDoc} */ @Override public void clear() { ConcurrentLinkedHashMap.this.clear(); } } /** * Values collection of the map. */ private final class Values extends AbstractValues { /** {@inheritDoc} */ @Override public Iterator<V> iterator() { return new ValueIterator(true); } } /** * Values collection of the map. */ private final class ValuesDescending extends AbstractValues { /** {@inheritDoc} */ @Override public Iterator<V> iterator() { return new ValueIterator(false); } } /** * Entry set implementation. */ private abstract class AbstractEntrySet extends AbstractSet<Map.Entry<K, V>> { /** {@inheritDoc} */ @Override public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> e = (Map.Entry<?,?>)o; V v = get(e.getKey()); return v != null && v.equals(e.getValue()); } /** {@inheritDoc} */ @Override public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> e = (Map.Entry<?,?>)o; return ConcurrentLinkedHashMap.this.remove(e.getKey(), e.getValue()); } /** {@inheritDoc} */ @Override public int size() { return ConcurrentLinkedHashMap.this.size(); } /** {@inheritDoc} */ @Override public void clear() { ConcurrentLinkedHashMap.this.clear(); } } /** * Entry set implementation. */ private final class EntrySet extends AbstractEntrySet { /** {@inheritDoc} */ @Override public Iterator<Map.Entry<K, V>> iterator() { return new EntryIterator(true); } } /** * Entry set implementation. */ private final class EntrySetDescending extends AbstractEntrySet { /** {@inheritDoc} */ @Override public Iterator<Map.Entry<K, V>> iterator() { return new EntryIterator(false); } } /** * Defines queue policy for this hash map. */ @SuppressWarnings("PublicInnerClass") public enum QueuePolicy { /** * Default policy. Single queue is maintained. Iteration order is preserved. */ SINGLE_Q, /** * Instance of {@code ArrayDeque} is created for each segment. This gives * the fastest "natural" evicts for bounded maps. * <p> * NOTE: Remove operations on map are slower than with other policies. * <p> * NOTE: Iteration order is not preserved, i.e. iteration goes as if it was ordinary hash map. */ PER_SEGMENT_Q, /** * Instance of {@code GridConcurrentLinkedDequeue} is created for each segment. This gives * faster "natural" evicts for bounded queues and better remove operation times. * <p> * NOTE: Iteration order is not preserved, i.e. iteration goes as if it was ordinary hash map. */ PER_SEGMENT_Q_OPTIMIZED_RMV } }