/* * This file is part of the HyperGraphDB source distribution. This is copyrighted * software. For permitted uses, licensing options and redistribution, please see * the LicensingInformation file at the root level of the distribution. * * Copyright (c) 2005-2010 Kobrix Software, Inc. All rights reserved. */ package org.hypergraphdb.util; import java.lang.ref.*; import java.util.*; /** * This is a modified version of @see{WeakHashMap} from JDK 1.5. * This modification uses System.identityHashCode() rather than * the object's hash code. All equality checks are identity checks * (==) rather than objet equality (.equals); @see{IdentityHashMap} * for more information on the changes made in an identity hash map. * * A hashtable-based <tt>Map</tt> implementation with <em>weak * keys</em>. An entry in a <tt>WeakIdentityHashMap</tt> will * automatically be removed when its key is no longer in ordinary use. * More precisely, the presence of a mapping for a given key will not * prevent the key from being discarded by the garbage collector, that * is, made finalizable, finalized, and then reclaimed. When a key * has been discarded its entry is effectively removed from the map, * so this class behaves somewhat differently than other <tt>Map</tt> * implementations. * * <p> Both null values and the null key are supported. This class has * performance characteristics similar to those of the <tt>HashMap</tt> * class, and has the same efficiency parameters of <em>initial capacity</em> * and <em>load factor</em>. * * <p> Like most collection classes, this class is not synchronized. A * synchronized <tt>WeakIdentityHashMap</tt> may be constructed using the * <tt>Collections.synchronizedMap</tt> method. * * <p> The behavior of the <tt>WeakIdentityHashMap</tt> class depends * in part upon the actions of the garbage collector, so several * familiar (though not required) <tt>Map</tt> invariants do not hold * for this class. Because the garbage collector may discard keys at * any testtime, a <tt>WeakIdentityHashMap</tt> may behave as though an * unknown thread is silently removing entries. In particular, even * if you synchronize on a <tt>WeakIdentityHashMap</tt> instance and * invoke none of its mutator methods, it is possible for the * <tt>size</tt> method to return smaller values over testtime, for the * <tt>isEmpty</tt> method to return <tt>false</tt> and then * <tt>true</tt>, for the <tt>containsKey</tt> method to return * <tt>true</tt> and later <tt>false</tt> for a given key, for the * <tt>get</tt> method to return a value for a given key but later * return <tt>null</tt>, for the <tt>put</tt> method to return * <tt>null</tt> and the <tt>remove</tt> method to return * <tt>false</tt> for a key that previously appeared to be in the map, * and for successive examinations of the key set, the value set, and * the entry set to yield successively smaller numbers of elements. * * <p> Each key object in a <tt>WeakIdentityHashMap</tt> is stored * indirectly as the referent of a weak reference. Therefore a key * will automatically be removed only after the weak references to it, * both inside and outside of the map, have been cleared by the * garbage collector. * * <p> <strong>Implementation note:</strong> The value objects in a * <tt>WeakIdentityHashMap</tt> are held by ordinary strong * references. Thus care should be taken to ensure that value objects * do not strongly refer to their own keys, either directly or * indirectly, since that will prevent the keys from being discarded. * Note that a value object may refer indirectly to its key via the * <tt>WeakIdentityHashMap</tt> itself; that is, a value object may * strongly refer to some other key object whose associated value * object, in turn, strongly refers to the key of the first value * object. One way to deal with this is to wrap values themselves * within <tt>WeakReferences</tt> before inserting, as in: * <tt>m.put(key, new WeakReference(value))</tt>, and then unwrapping * upon each <tt>get</tt>. * * <p>The iterators returned by all of this class's "collection view methods" * are <i>fail-fast</i>: if the map is structurally modified at any testtime after * the iterator is created, in any way except through the iterator's own * <tt>remove</tt> or <tt>add</tt> methods, the iterator will throw a * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined testtime in the * future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../guide/collections/index.html"> * Java Collections Framework</a>. * * Modified by artzi 2.2.06 to adding a callback function * called when references are found on the reference queue (garbage collected) * * @version 1.30, 02/19/04 * @author Doug Lea * @author Josh Bloch * @author Mark Reinhold * @since 1.2 * @see java.util.HashMap * @see java.lang.ref.WeakReference */ @SuppressWarnings("unchecked") public class WeakIdentityHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V> { /** * The default initial capacity -- MUST be a power of two. */ private static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load fast used when none specified in constructor. */ private static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ private Entry<K,V>[] table; /** * The number of key-value mappings contained in this weak hash map. */ private int size; /** * The next size value at which to resize (capacity * load factor). */ private int threshold; /** * The load factor for the hash table. */ private final float loadFactor; /** * Reference queue for cleared WeakEntries */ private final ReferenceQueue<K> queue = new ReferenceQueue<K>(); /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ private volatile int modCount; /** * Constructs a new, empty <tt>WeakIdentityHashMap</tt> with the * given initial capacity and the given load factor. * * @param initialCapacity The initial capacity of the * <tt>WeakIdentityHashMap</tt> * @param loadFactor The load factor of the * <tt>WeakIdentityHashMap</tt> * @throws IllegalArgumentException If the initial capacity is negative, * or if the load factor is nonpositive. */ public WeakIdentityHashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Initial Capacity: "+ initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal Load factor: "+ loadFactor); int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; @SuppressWarnings("unchecked") Entry<K,V>[] tmp= new Entry[capacity]; table = tmp; // unchecked cast this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); } /** * Constructs a new, empty <tt>WeakIdentityHashMap</tt> with the * given initial capacity and the default load factor, which is * <tt>0.75</tt>. * * @param initialCapacity The initial capacity of the * <tt>WeakIdentityHashMap</tt> * @throws IllegalArgumentException If the initial capacity is negative. */ public WeakIdentityHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs a new, empty <tt>WeakIdentityHashMap</tt> with the * default initial capacity (16) and the default load factor * (0.75). */ public WeakIdentityHashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (DEFAULT_INITIAL_CAPACITY); @SuppressWarnings("unchecked") Entry<K,V>[] tmp= new Entry[DEFAULT_INITIAL_CAPACITY]; // unchecked cast table = tmp; } /** * Constructs a new <tt>WeakIdentityHashMap</tt> with the same * mappings as the specified <tt>Map</tt>. The * <tt>WeakIdentityHashMap</tt> is created with default load * factor, which is <tt>0.75</tt> and an initial capacity * sufficient to hold the mappings in the specified <tt>Map</tt>. * * @param t the map whose mappings are to be placed in this map. * @throws NullPointerException if the specified map is null. * @since 1.3 */ public WeakIdentityHashMap(Map<? extends K, ? extends V> t) { this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1, 16), DEFAULT_LOAD_FACTOR); putAll(t); } // internal utilities /** * Value representing null keys inside tables. */ // This is problematic because it isn't of the right type. private static final Object NULL_KEY = new Object(); /** * Use NULL_KEY for key if it is null. */ // not: "private static <K> K maskNull(K key)" because NULL_KEY isn't of type K. private static Object maskNull(Object key) { return (key == null ? NULL_KEY : key); } /** * Return internal representation of null key back to caller as null */ private static <K> K unmaskNull(K key) { return (key == NULL_KEY ? null : key); } /** * Check for equality of non-null reference x and possibly-null y. Uses * identity equality. */ static boolean eq(Object x, Object y) { return x == y; } /** Return the hash code for x **/ static int hasher (Object x) { return System.identityHashCode (x); } /** * Return index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); } /** * Expunge stale entries from the table. */ private void expungeStaleEntries() { Entry<K,V> e; // These types look wronge to me. while ( (e = (Entry<K,V>) queue.poll()) != null) { // unchecked cast int h = e.hash; int i = indexFor(h, table.length); Entry<K,V> prev = table[i]; Entry<K,V> p = prev; while (p != null) { Entry<K,V> next = p.next; if (p == e) { if (prev == e) table[i] = next; else prev.next = next; e.next = null; // Help GC e.value = null; // " " size--; break; } prev = p; p = next; } } } /** * Return the table after first expunging stale entries */ private Entry<K,V>[] getTable() { expungeStaleEntries(); return table; } /** * Returns the number of key-value mappings in this map. * This result is a snapshot, and may not reflect unprocessed * entries that will be removed before next attempted access * because they are no longer referenced. */ @Override public int size() { if (size == 0) return 0; expungeStaleEntries(); return size; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * This result is a snapshot, and may not reflect unprocessed * entries that will be removed before next attempted access * because they are no longer referenced. */ @Override public boolean isEmpty() { return size() == 0; } /** * Returns the value to which the specified key is mapped in this weak * hash map, or <tt>null</tt> if the map contains no mapping for * this key. A return value of <tt>null</tt> does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it is also * possible that the map explicitly maps the key to <tt>null</tt>. The * <tt>containsKey</tt> method may be used to distinguish these two * cases. * * @param key the key whose associated value is to be returned. * @return the value to which this map maps the specified key, or * <tt>null</tt> if the map contains no mapping for this key. * @see #put(Object, Object) */ @Override public V get(Object key) { Object k = maskNull(key); int h = hasher (k); Entry<K,V>[] tab = getTable(); int index = indexFor(h, tab.length); Entry<K,V> e = tab[index]; while (e != null) { if (e.hash == h && eq(k, e.get())) return e.value; e = e.next; } return null; } /** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if there is a mapping for <tt>key</tt>; * <tt>false</tt> otherwise */ @Override public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns the entry associated with the specified key in the HashMap. * Returns null if the HashMap contains no mapping for this key. */ Entry<K,V> getEntry(Object key) { Object k = maskNull(key); int h = hasher (k); Entry<K,V>[] tab = getTable(); int index = indexFor(h, tab.length); Entry<K,V> e = tab[index]; while (e != null && !(e.hash == h && eq(k, e.get()))) e = e.next; return e; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for this key, the old * value is replaced. * * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return previous value associated with specified key, or <tt>null</tt> * if there was no mapping for key. A <tt>null</tt> return can * also indicate that the HashMap previously associated * <tt>null</tt> with the specified key. */ @Override public V put(K key, V value) { K k = (K) maskNull(key); // unchecked cast int h = System.identityHashCode (k); Entry<K,V>[] tab = getTable(); int i = indexFor(h, tab.length); for (Entry<K,V> e = tab[i]; e != null; e = e.next) { if (h == e.hash && eq(k, e.get())) { V oldValue = e.value; if (value != oldValue) e.value = value; return oldValue; } } modCount++; Entry<K,V> e = tab[i]; tab[i] = new Entry<K,V>(k, value, queue, h, e); if (++size >= threshold) resize(tab.length * 2); return null; } /** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry<K,V>[] oldTable = getTable(); int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } @SuppressWarnings("unchecked") Entry<K,V>[] newTable = new Entry[newCapacity]; // unchecked cast transfer(oldTable, newTable); table = newTable; /* * If ignoring null elements and processing ref queue caused massive * shrinkage, then restore old table. This should be rare, but avoids * unbounded expansion of garbage-filled tables. */ if (size >= threshold / 2) { threshold = (int)(newCapacity * loadFactor); } else { expungeStaleEntries(); transfer(newTable, oldTable); table = oldTable; } } /** Transfer all entries from src to dest tables */ private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) { for (int j = 0; j < src.length; ++j) { Entry<K,V> e = src[j]; src[j] = null; while (e != null) { Entry<K,V> next = e.next; Object key = e.get(); if (key == null) { e.next = null; // Help GC e.value = null; // " " size--; } else { int i = indexFor(e.hash, dest.length); e.next = dest[i]; dest[i] = e; } e = next; } } } /** * Copies all of the mappings from the specified map to this map These * mappings will replace any mappings that this map had for any of the * keys currently in the specified map.<p> * * @param m mappings to be stored in this map. * @throws NullPointerException if the specified map is null. */ @Override public void putAll(Map<? extends K, ? extends V> m) { int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; /* * Expand the map if the map if the number of mappings to be added * is greater than or equal to threshold. This is conservative; the * obvious condition is (m.size() + size) >= threshold, but this * condition could result in a map with twice the appropriate capacity, * if the keys to be added overlap with the keys already in this map. * By using the conservative calculation, we subject ourself * to at most one extra resize. */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry<? extends K, ? extends V> e = i.next(); put(e.getKey(), e.getValue()); } } /** * Removes the mapping for this key from this map if present. * * @param key key whose mapping is to be removed from the map. * @return previous value associated with specified key, or <tt>null</tt> * if there was no mapping for key. A <tt>null</tt> return can * also indicate that the map previously associated <tt>null</tt> * with the specified key. */ @Override public V remove(Object key) { Object k = maskNull(key); int h = hasher (k); Entry<K,V>[] tab = getTable(); int i = indexFor(h, tab.length); Entry<K,V> prev = tab[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (h == e.hash && eq(k, e.get())) { modCount++; size--; if (prev == e) tab[i] = next; else prev.next = next; return e.value; } prev = e; e = next; } return null; } /** Special version of remove needed by Entry set */ Entry<K,V> removeMapping(Object o) { if (!(o instanceof Map.Entry)) return null; Entry<K,V>[] tab = getTable(); Map.Entry entry = (Map.Entry)o; Object k = maskNull(entry.getKey()); int h = hasher (k); int i = indexFor(h, tab.length); Entry<K,V> prev = tab[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (h == e.hash && e.equals(entry)) { modCount++; size--; if (prev == e) tab[i] = next; else prev.next = next; return e; } prev = e; e = next; } return null; } /** * Removes all mappings from this map. */ @Override public void clear() { // clear out ref queue. We don't need to expunge entries // since table is getting cleared. while (queue.poll() != null){ //empty body } modCount++; Entry<K,V>[] tab = table; for (int i = 0; i < tab.length; ++i) tab[i] = null; size = 0; // Allocation of array may have caused GC, which may have caused // additional entries to go stale. Removing these entries from the // reference queue will make them eligible for reclamation. while (queue.poll() != null){ //empty body } } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested. * @return <tt>true</tt> if this map maps one or more keys to the * specified value. */ @Override public boolean containsValue(Object value) { if (value==null) return containsNullValue(); Entry<K,V>[] tab = getTable(); for (int i = tab.length ; i-- > 0 ;) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument */ private boolean containsNullValue() { Entry<K,V>[] tab = getTable(); for (int i = tab.length ; i-- > 0 ;) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value==null) return true; return false; } /** * The entries in this hash table extend WeakReference, using its main ref * field as the key. */ private static class Entry<K,V> extends WeakReference<K> implements Map.Entry<K,V> { private V value; private final int hash; private Entry<K,V> next; /** * Create new entry. */ Entry(K key, V value, ReferenceQueue<K> queue, int hash, Entry<K,V> next) { super(key, queue); this.value = value; this.hash = hash; this.next = next; } public K getKey() { return WeakIdentityHashMap.<K>unmaskNull(get()); } public V getValue() { return value; } public V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } @Override public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (eq (k1, k2)) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } @Override public int hashCode() { Object k = getKey(); Object v = getValue(); return ((k==null ? 0 : hasher (k)) ^ (v==null ? 0 : v.hashCode())); } @Override public String toString() { return getKey() + "=" + getValue(); } } private abstract class HashIterator<T> implements Iterator<T> { int index; Entry<K,V> entry = null; Entry<K,V> lastReturned = null; int expectedModCount = modCount; /** * Strong reference needed to avoid disappearance of key * between hasNext and next */ Object nextKey = null; /** * Strong reference needed to avoid disappearance of key * between nextEntry() and any use of the entry */ Object currentKey = null; HashIterator() { index = (size() != 0 ? table.length : 0); } public boolean hasNext() { Entry<K,V>[] t = table; while (nextKey == null) { Entry<K,V> e = entry; int i = index; while (e == null && i > 0) e = t[--i]; entry = e; index = i; if (e == null) { currentKey = null; return false; } nextKey = e.get(); // hold on to key in strong ref if (nextKey == null) entry = entry.next; } return true; } /** The common parts of next() across different types of iterators */ protected Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (nextKey == null && !hasNext()) throw new NoSuchElementException(); lastReturned = entry; entry = entry.next; currentKey = nextKey; nextKey = null; return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); WeakIdentityHashMap.this.remove(currentKey); expectedModCount = modCount; lastReturned = null; currentKey = null; } } private class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } private class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } private class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // Views private transient Set<Map.Entry<K,V>> entrySet = null; private transient volatile Set<K> our_keySet = null; /** * Returns a set view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * @return a set view of the keys contained in this map. */ @Override public Set<K> keySet() { Set<K> ks = our_keySet; return (ks != null ? ks : (our_keySet = new KeySet())); } private class KeySet extends AbstractSet<K> { @Override public Iterator<K> iterator() { return new KeyIterator(); } @Override public int size() { return WeakIdentityHashMap.this.size(); } @Override public boolean contains(Object o) { return containsKey(o); } @Override public boolean remove(Object o) { if (containsKey(o)) { WeakIdentityHashMap.this.remove(o); return true; } else return false; } @Override public void clear() { WeakIdentityHashMap.this.clear(); } @Override public Object[] toArray() { Collection<K> c = new ArrayList<K>(size()); for (Iterator<K> i = iterator(); i.hasNext(); ) c.add(i.next()); return c.toArray(); } @Override public <T> T[] toArray(T[] a) { Collection<K> c = new ArrayList<K>(size()); for (Iterator<K> i = iterator(); i.hasNext(); ) c.add(i.next()); return c.toArray(a); } } transient volatile Collection<V> our_values = null; /** * Returns a collection view of the values contained in this map. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the values contained in this map. */ @Override public Collection<V> values() { Collection<V> vs = our_values; return (vs != null ? vs : (our_values = new Values())); } private class Values extends AbstractCollection<V> { @Override public Iterator<V> iterator() { return new ValueIterator(); } @Override public int size() { return WeakIdentityHashMap.this.size(); } @Override public boolean contains(Object o) { return containsValue(o); } @Override public void clear() { WeakIdentityHashMap.this.clear(); } @Override public Object[] toArray() { Collection<V> c = new ArrayList<V>(size()); for (Iterator<V> i = iterator(); i.hasNext(); ) c.add(i.next()); return c.toArray(); } @Override public <T> T[] toArray(T[] a) { Collection<V> c = new ArrayList<V>(size()); for (Iterator<V> i = iterator(); i.hasNext(); ) c.add(i.next()); return c.toArray(a); } } /** * Returns a collection view of the mappings contained in this map. Each * element in the returned collection is a <tt>Map.Entry</tt>. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the mappings contained in this map. * @see java.util.Map.Entry */ @Override public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es = entrySet; return (es != null ? es : (entrySet = new EntrySet())); } private class EntrySet extends AbstractSet<Map.Entry<K,V>> { @Override public Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } @Override public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k = e.getKey(); Entry candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } @Override public boolean remove(Object o) { return removeMapping(o) != null; } @Override public int size() { return WeakIdentityHashMap.this.size(); } @Override public void clear() { WeakIdentityHashMap.this.clear(); } @Override public Object[] toArray() { Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size()); for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) c.add(new OurSimpleEntry<K,V>(i.next())); return c.toArray(); } @Override public <T> T[] toArray(T[] a) { Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size()); for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) c.add(new OurSimpleEntry<K,V>(i.next())); return c.toArray(a); } } /** Version copied from Abstract Map because it is not public **/ static class OurSimpleEntry<K,V> implements Map.Entry<K,V> { K key; V value; public OurSimpleEntry(K key, V value) { this.key = key; this.value = value; } public OurSimpleEntry(Map.Entry<K,V> e) { this.key = e.getKey(); this.value = e.getValue(); } public K getKey() { return key; } public V getValue() { return value; } public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } @Override public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return WeakIdentityHashMap.eq(key, e.getKey()) && eq(value, e.getValue()); } @Override public int hashCode() { return ((key == null) ? 0 : key.hashCode()) ^ ((value == null) ? 0 : value.hashCode()); } @Override public String toString() { return key + "=" + value; } private static boolean eq(Object o1, Object o2) { return (o1 == null ? o2 == null : o1.equals(o2)); } } public ReferenceQueue<K> getQueue() { return queue; } }