/* * This file is part of the HyperGraphDB source distribution. This is copyrighted * software. For permitted uses, licensing options and redistribution, please see * the LicensingInformation file at the root level of the distribution. * * Copyright (c) 2005-2010 Kobrix Software, Inc. All rights reserved. */ package org.hypergraphdb.util; import java.io.IOException; import java.io.Serializable; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; /** * Same has HashMap, but uses system hash code and == for equals. Used instead of the * standard IdentityHashMap because the latter is implemented with linear probing and it's * harder to get a linked version out of it. * * @author boris * * @param <K> * @param <V> */ @SuppressWarnings("unchecked") class MyIdentityHashMap<K, V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. **/ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry<K,V>[] table; /** * The number of key-value mappings contained in this identity hash map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * The number of times this MyIdentityHashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the MyIdentityHashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the MyIdentityHashMap fail-fast. (See ConcurrentModificationException). */ transient volatile int modCount; /** * Constructs an empty <tt>MyIdentityHashMap</tt> with the specified initial * capacity and load factor. * * @param initialCapacity The initial capacity. * @param loadFactor The load factor. * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive. */ public MyIdentityHashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); } /** * Constructs an empty <tt>MyIdentityHashMap</tt> with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public MyIdentityHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty <tt>MyIdentityHashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public MyIdentityHashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } /** * Constructs a new <tt>MyIdentityHashMap</tt> with the same mappings as the * specified <tt>Map</tt>. The <tt>MyIdentityHashMap</tt> is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified <tt>Map</tt>. * * @param m the map whose mappings are to be placed in this map. * @throws NullPointerException if the specified map is null. */ public MyIdentityHashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } // internal utilities /** * Initialization hook for subclasses. This method is called * in all constructors and pseudo-constructors (clone, readObject) * after MyIdentityHashMap has been initialized but before any entries have * been inserted. (In the absence of this method, readObject would * require explicit knowledge of subclasses.) */ void init() { } /** * Value representing null keys inside tables. */ static final Object NULL_KEY = new Object(); /** * Returns internal representation for key. Use NULL_KEY if key is null. */ static <T> T maskNull(T key) { return key == null ? (T)NULL_KEY : key; } /** * Returns key represented by specified internal representation. */ static <T> T unmaskNull(T key) { return (key == NULL_KEY ? null : key); } /** * Returns a hash value for the specified object. In addition to * the object's own hashCode, this method applies a "supplemental * hash function," which defends against poor quality hash functions. * This is critical because MyIdentityHashMap uses power-of two length * hash tables.<p> * * The shift distances in this function were chosen as the result * of an automated search over the entire four-dimensional search space. */ static int hash(Object x) { int h = System.identityHashCode(x); //x.hashCode(); h += ~(h << 9); h ^= (h >>> 14); h += (h << 4); h ^= (h >>> 10); return h; } /** * Check for equality of non-null reference x and possibly-null y. */ static boolean eq(Object x, Object y) { return x == y; // || x.equals(y); } /** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map. */ public int size() { return size; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings. */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped in this identity * hash map, or <tt>null</tt> if the map contains no mapping for this key. * A return value of <tt>null</tt> does not <i>necessarily</i> indicate * that the map contains no mapping for the key; it is also possible that * the map explicitly maps the key to <tt>null</tt>. The * <tt>containsKey</tt> method may be used to distinguish these two cases. * * @param key the key whose associated value is to be returned. * @return the value to which this map maps the specified key, or * <tt>null</tt> if the map contains no mapping for this key. * @see #put(Object, Object) */ public V get(Object key) { Object k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); Entry<K,V> e = table[i]; while (true) { if (e == null) return null; if (e.hash == hash && eq(k, e.key)) return e.value; e = e.next; } } /** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { Object k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); Entry e = table[i]; while (e != null) { if (e.hash == hash && eq(k, e.key)) return true; e = e.next; } return false; } /** * Returns the entry associated with the specified key in the * MyIdentityHashMap. Returns null if the MyIdentityHashMap contains no mapping * for this key. */ Entry<K,V> getEntry(Object key) { Object k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); Entry<K,V> e = table[i]; while (e != null && !(e.hash == hash && eq(k, e.key))) e = e.next; return e; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for this key, the old * value is replaced. * * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return previous value associated with specified key, or <tt>null</tt> * if there was no mapping for key. A <tt>null</tt> return can * also indicate that the MyIdentityHashMap previously associated * <tt>null</tt> with the specified key. */ public V put(K key, V value) { K k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { if (e.hash == hash && eq(k, e.key)) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, k, value, i); return null; } /** * This method is used instead of put by constructors and * pseudoconstructors (clone, readObject). It does not resize the table, * check for comodification, etc. It calls createEntry rather than * addEntry. */ private void putForCreate(K key, V value) { K k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); /** * Look for preexisting entry for key. This will never happen for * clone or deserialize. It will only happen for construction if the * input Map is a sorted map whose ordering is inconsistent w/ equals. */ for (Entry<K,V> e = table[i]; e != null; e = e.next) { if (e.hash == hash && eq(k, e.key)) { e.value = value; return; } } createEntry(hash, k, value, i); } void putAllForCreate(Map<? extends K, ? extends V> m) { for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry<? extends K, ? extends V> e = i.next(); putForCreate(e.getKey(), e.getValue()); } } /** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); } /** * Transfer all entries from current table to newTable. */ void transfer(Entry<K,V>[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } } /** * Copies all of the mappings from the specified map to this map * These mappings will replace any mappings that * this map had for any of the keys currently in the specified map. * * @param m mappings to be stored in this map. * @throws NullPointerException if the specified map is null. */ public void putAll(Map<? extends K, ? extends V> m) { int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; /* * Expand the map if the map if the number of mappings to be added * is greater than or equal to threshold. This is conservative; the * obvious condition is (m.size() + size) >= threshold, but this * condition could result in a map with twice the appropriate capacity, * if the keys to be added overlap with the keys already in this map. * By using the conservative calculation, we subject ourself * to at most one extra resize. */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry<? extends K, ? extends V> e = i.next(); put(e.getKey(), e.getValue()); } } /** * Removes the mapping for this key from this map if present. * * @param key key whose mapping is to be removed from the map. * @return previous value associated with specified key, or <tt>null</tt> * if there was no mapping for key. A <tt>null</tt> return can * also indicate that the map previously associated <tt>null</tt> * with the specified key. */ public V remove(Object key) { Entry<K,V> e = removeEntryForKey(key); return (e == null ? null : e.value); } /** * Removes and returns the entry associated with the specified key * in the MyIdentityHashMap. Returns null if the MyIdentityHashMap contains no mapping * for this key. */ Entry<K,V> removeEntryForKey(Object key) { Object k = maskNull(key); int hash = hash(k); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (e.hash == hash && eq(k, e.key)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Special version of remove for EntrySet. */ Entry<K,V> removeMapping(Object o) { if (!(o instanceof Map.Entry)) return null; Map.Entry<K,V> entry = (Map.Entry<K,V>) o; Object k = maskNull(entry.getKey()); int hash = hash(k); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Removes all mappings from this map. */ public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested. * @return <tt>true</tt> if this map maps one or more keys to the * specified value. */ public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument **/ private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } /** * Returns a shallow copy of this <tt>MyIdentityHashMap</tt> instance: the keys and * values themselves are not cloned. * * @return a shallow copy of this map. */ public Object clone() { MyIdentityHashMap<K,V> result = null; try { result = (MyIdentityHashMap<K,V>)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; final int hash; Entry<K,V> next; /** * Create new entry. */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public K getKey() { return MyIdentityHashMap.<K>unmaskNull(key); } public V getValue() { return value; } public V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public int hashCode() { return (key==NULL_KEY ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the MyIdentityHashMap. */ void recordAccess(MyIdentityHashMap<K,V> m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(MyIdentityHashMap<K,V> m) { } } /** * Add a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); } /** * Like addEntry except that this version is used when creating entries * as part of Map construction or "pseudo-construction" (cloning, * deserialization). This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of MyIdentityHashMap(Map), * clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); size++; } private abstract class HashIterator<E> implements Iterator<E> { Entry<K,V> next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry<K,V> current; // current entry HashIterator() { expectedModCount = modCount; Entry[] t = table; int i = t.length; Entry<K,V> n = null; if (size != 0) { // advance to first entry while (i > 0 && (n = t[--i]) == null) ; } next = n; index = i; } public boolean hasNext() { return next != null; } Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K,V> e = next; if (e == null) throw new NoSuchElementException(); Entry<K,V> n = e.next; Entry[] t = table; int i = index; while (n == null && i > 0) n = t[--i]; index = i; next = n; return current = e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; MyIdentityHashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } private class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } private class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // Views protected transient volatile Set<K> keySet = null; protected transient Set<Map.Entry<K,V>> entrySet = null; protected transient volatile Collection<V> values = null; /** * Returns a set view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * @return a set view of the keys contained in this map. */ public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return MyIdentityHashMap.this.removeEntryForKey(o) != null; } public void clear() { MyIdentityHashMap.this.clear(); } } /** * Returns a collection view of the values contained in this map. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the values contained in this map. */ public Collection<V> values() { Collection<V> vs = values; return (vs != null ? vs : (values = new Values())); } private class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { MyIdentityHashMap.this.clear(); } } /** * Returns a collection view of the mappings contained in this map. Each * element in the returned collection is a <tt>Map.Entry</tt>. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the mappings contained in this map. * @see Map.Entry */ public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es = entrySet; return (es != null ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet())); } private class EntrySet extends AbstractSet/*<Map.Entry<K,V>>*/ { public Iterator/*<Map.Entry<K,V>>*/ iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> e = (Map.Entry<K,V>) o; Entry<K,V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { MyIdentityHashMap.this.clear(); } } /** * Save the state of the <tt>MyIdentityHashMap</tt> instance to a stream (i.e., * serialize it). * * @serialData The <i>capacity</i> of the MyIdentityHashMap (the length of the * bucket array) is emitted (int), followed by the * <i>size</i> of the MyIdentityHashMap (the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping represented by the MyIdentityHashMap * The key-value mappings are emitted in the order that they * are returned by <tt>entrySet().iterator()</tt>. * */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { Iterator<Map.Entry<K,V>> i = entrySet().iterator(); // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); // Write out number of buckets s.writeInt(table.length); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) while (i.hasNext()) { Map.Entry<K,V> e = i.next(); s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } private static final long serialVersionUID = 362498820763181265L; /** * Reconstitute the <tt>MyIdentityHashMap</tt> instance from a stream (i.e., * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold, loadfactor, and any hidden stuff s.defaultReadObject(); // Read in number of buckets and allocate the bucket array; int numBuckets = s.readInt(); table = new Entry[numBuckets]; init(); // Give subclass a chance to do its thing. // Read in size (number of Mappings) int size = s.readInt(); // Read the keys and values, and put the mappings in the MyIdentityHashMap for (int i=0; i<size; i++) { K key = (K) s.readObject(); V value = (V) s.readObject(); putForCreate(key, value); } } // These methods are used when serializing HashSets int capacity() { return table.length; } float loadFactor() { return loadFactor; } }