/* * Encog(tm) Core v3.4 - Java Version * http://www.heatonresearch.com/encog/ * https://github.com/encog/encog-java-core * Copyright 2008-2016 Heaton Research, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * For more information on Heaton Research copyrights, licenses * and trademarks visit: * http://www.heatonresearch.com/copyright */ package org.encog.neural.neat.training.opp; import java.io.Serializable; import java.util.Random; import org.encog.engine.network.activation.ActivationFunction; import org.encog.mathutil.randomize.RangeRandomizer; import org.encog.ml.ea.genome.Genome; import org.encog.neural.neat.NEATNeuronType; import org.encog.neural.neat.NEATPopulation; import org.encog.neural.neat.training.NEATGenome; import org.encog.neural.neat.training.NEATInnovation; import org.encog.neural.neat.training.NEATLinkGene; import org.encog.neural.neat.training.NEATNeuronGene; /** * Mutate a genome by adding a new node. To do this a random link is chosen. The * a neuron is created to split this link. This removes one link and adds two * new links. The weights on the new link are created to minimize changes to the * values produced by the neuron. * * ----------------------------------------------------------------------------- * http://www.cs.ucf.edu/~kstanley/ Encog's NEAT implementation was drawn from * the following three Journal Articles. For more complete BibTeX sources, see * NEATNetwork.java. * * Evolving Neural Networks Through Augmenting Topologies * * Generating Large-Scale Neural Networks Through Discovering Geometric * Regularities * * Automatic feature selection in neuroevolution */ public class NEATMutateAddNode extends NEATMutation implements Serializable { /** * {@inheritDoc} */ @Override public void performOperation(final Random rnd, final Genome[] parents, final int parentIndex, final Genome[] offspring, final int offspringIndex) { final NEATGenome target = obtainGenome(parents, parentIndex, offspring, offspringIndex); int countTrysToFindOldLink = getOwner().getMaxTries(); final NEATPopulation pop = ((NEATPopulation) target.getPopulation()); // the link to split NEATLinkGene splitLink = null; final int sizeBias = ((NEATGenome)parents[0]).getInputCount() + ((NEATGenome)parents[0]).getOutputCount() + 10; // if there are not at least int upperLimit; if (target.getLinksChromosome().size() < sizeBias) { upperLimit = target.getNumGenes() - 1 - (int) Math.sqrt(target.getNumGenes()); } else { upperLimit = target.getNumGenes() - 1; } while ((countTrysToFindOldLink--) > 0) { // choose a link, use the square root to prefer the older links final int i = RangeRandomizer.randomInt(0, upperLimit); final NEATLinkGene link = target.getLinksChromosome().get(i); // get the from neuron final long fromNeuron = link.getFromNeuronID(); if ((link.isEnabled()) && (target.getNeuronsChromosome() .get(getElementPos(target, fromNeuron)) .getNeuronType() != NEATNeuronType.Bias)) { splitLink = link; break; } } if (splitLink == null) { return; } splitLink.setEnabled(false); final long from = splitLink.getFromNeuronID(); final long to = splitLink.getToNeuronID(); final NEATInnovation innovation = ((NEATPopulation)getOwner().getPopulation()).getInnovations() .findInnovationSplit(from, to); // add the splitting neuron final ActivationFunction af = ((NEATPopulation)getOwner().getPopulation()) .getActivationFunctions().pick(new Random()); target.getNeuronsChromosome().add( new NEATNeuronGene(NEATNeuronType.Hidden, af, innovation .getNeuronID(), innovation.getInnovationID())); // add the other two sides of the link createLink(target, from, innovation.getNeuronID(), splitLink.getWeight()); createLink(target, innovation.getNeuronID(), to, pop.getWeightRange()); target.sortGenes(); } }