/* * Encog(tm) Core v3.4 - Java Version * http://www.heatonresearch.com/encog/ * https://github.com/encog/encog-java-core * Copyright 2008-2016 Heaton Research, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * For more information on Heaton Research copyrights, licenses * and trademarks visit: * http://www.heatonresearch.com/copyright */ package org.encog.neural.networks; import org.encog.Encog; import org.encog.engine.network.activation.ActivationElliott; import org.encog.engine.network.activation.ActivationElliottSymmetric; import org.encog.engine.network.activation.ActivationFunction; import org.encog.engine.network.activation.ActivationSigmoid; import org.encog.engine.network.activation.ActivationTANH; import org.encog.mathutil.randomize.ConsistentRandomizer; import org.encog.mathutil.randomize.NguyenWidrowRandomizer; import org.encog.mathutil.randomize.Randomizer; import org.encog.mathutil.randomize.RangeRandomizer; import org.encog.ml.BasicML; import org.encog.ml.MLClassification; import org.encog.ml.MLContext; import org.encog.ml.MLEncodable; import org.encog.ml.MLError; import org.encog.ml.MLFactory; import org.encog.ml.MLRegression; import org.encog.ml.MLResettable; import org.encog.ml.data.MLData; import org.encog.ml.data.MLDataSet; import org.encog.ml.data.basic.BasicMLData; import org.encog.ml.factory.MLMethodFactory; import org.encog.neural.NeuralNetworkError; import org.encog.neural.flat.FlatNetwork; import org.encog.neural.networks.layers.Layer; import org.encog.neural.networks.structure.NetworkCODEC; import org.encog.neural.networks.structure.NeuralStructure; import org.encog.util.EngineArray; import org.encog.util.csv.CSVFormat; import org.encog.util.csv.NumberList; import org.encog.util.obj.ObjectCloner; import org.encog.util.simple.EncogUtility; /** * This class implements a neural network. This class works in conjunction the * Layer classes. Layers are added to the BasicNetwork to specify the structure * of the neural network. * * The first layer added is the input layer, the final layer added is the output * layer. Any layers added between these two layers are the hidden layers. * * The network structure is stored in the structure member. It is important to * call: * * network.getStructure().finalizeStructure(); * * Once the neural network has been completely constructed. * */ public class BasicNetwork extends BasicML implements ContainsFlat, MLContext, MLRegression, MLEncodable, MLResettable, MLClassification, MLError, MLFactory { /** * Tag used for the connection limit. */ public static final String TAG_LIMIT = "CONNECTION_LIMIT"; /** * The default connection limit. */ public static final double DEFAULT_CONNECTION_LIMIT = 0.0000000001; /** * Serial id for this class. */ private static final long serialVersionUID = -136440631687066461L; /** * The property for connection limit. */ public static final String TAG_CONNECTION_LIMIT = "connectionLimit"; /** * The property for begin training. */ public static final String TAG_BEGIN_TRAINING = "beginTraining"; /** * The property for context target offset. */ public static final String TAG_CONTEXT_TARGET_OFFSET = "contextTargetOffset"; /** * The property for context target size. */ public static final String TAG_CONTEXT_TARGET_SIZE = "contextTargetSize"; /** * The property for end training. */ public static final String TAG_END_TRAINING = "endTraining"; /** * The property for has context. */ public static final String TAG_HAS_CONTEXT = "hasContext"; /** * The property for layer counts. */ public static final String TAG_LAYER_COUNTS = "layerCounts"; /** * The property for layer feed counts. */ public static final String TAG_LAYER_FEED_COUNTS = "layerFeedCounts"; /** * The property for layer index. */ public static final String TAG_LAYER_INDEX = "layerIndex"; /** * The property for weight index. */ public static final String TAG_WEIGHT_INDEX = "weightIndex"; /** * The property for bias activation. */ public static final String TAG_BIAS_ACTIVATION = "biasActivation"; /** * The property for layer context count. */ public static final String TAG_LAYER_CONTEXT_COUNT = "layerContextCount"; /** * Holds the structure of the network. This keeps the network from having to * constantly lookup layers and synapses. */ private final NeuralStructure structure; /** * Construct an empty neural network. */ public BasicNetwork() { this.structure = new NeuralStructure(this); } /** * Add a layer to the neural network. If there are no layers added this * layer will become the input layer. This function automatically updates * both the input and output layer references. * * @param layer * The layer to be added to the network. */ public void addLayer(final Layer layer) { layer.setNetwork(this); this.structure.getLayers().add(layer); } /** * Add to a weight. * @param fromLayer The from layer. * @param fromNeuron The from neuron. * @param toNeuron The to neuron. * @param value The value to add. */ public void addWeight(final int fromLayer, final int fromNeuron, final int toNeuron, final double value) { final double old = getWeight(fromLayer, fromNeuron, toNeuron); setWeight(fromLayer, fromNeuron, toNeuron, old + value); } /** * Calculate the error for this neural network. We always calculate the error * using the "regression" calculator. Neural networks don't directly support * classification, rather they use one-of-encoding or similar. So just using * the regression calculator gives a good approximation. * * @param data * The training set. * @return The error percentage. */ @Override public double calculateError(final MLDataSet data) { return EncogUtility.calculateRegressionError(this, data); } /** * Calculate the total number of neurons in the network across all layers. * * @return The neuron count. */ public int calculateNeuronCount() { int result = 0; for (final Layer layer : this.structure.getLayers()) { result += layer.getNeuronCount(); } return result; } /** * {@inheritDoc} */ @Override public int classify(final MLData input) { return winner(input); } /** * Clear any data from any context layers. */ @Override public void clearContext() { if (this.structure.getFlat() != null) { this.structure.getFlat().clearContext(); } } /** * Return a clone of this neural network. Including structure, weights and * bias values. This is a deep copy. * * @return A cloned copy of the neural network. */ @Override public Object clone() { final BasicNetwork result = (BasicNetwork) ObjectCloner.deepCopy(this); return result; } /** * Compute the output for this network. * * @param input * The input. * @param output * The output. */ public void compute(final double[] input, final double[] output) { final BasicMLData input2 = new BasicMLData(input); final MLData output2 = this.compute(input2); EngineArray.arrayCopy(output2.getData(), output); } /** * Compute the output for a given input to the neural network. * * @param input * The input to the neural network. * @return The output from the neural network. */ @Override public MLData compute(final MLData input) { try { final MLData result = new BasicMLData(this.structure.getFlat() .getOutputCount()); this.structure.getFlat().compute(input.getData(), result.getData()); return result; } catch (final ArrayIndexOutOfBoundsException ex) { throw new NeuralNetworkError( "Index exception: there was likely a mismatch between layer sizes, or the size of the input presented to the network.", ex); } } /** * {@inheritDoc} */ @Override public void decodeFromArray(final double[] encoded) { this.structure.requireFlat(); final double[] weights = this.structure.getFlat().getWeights(); if (weights.length != encoded.length) { throw new NeuralNetworkError( "Size mismatch, encoded array should be of length " + weights.length); } EngineArray.arrayCopy(encoded, weights); } /** * @return The weights as a comma separated list. */ public String dumpWeights() { final StringBuilder result = new StringBuilder(); NumberList.toList(CSVFormat.EG_FORMAT, result, this.structure.getFlat() .getWeights()); return result.toString(); } public String dumpWeightsVerbose() { final StringBuilder result = new StringBuilder(); for (int layer = 0; layer < this.getLayerCount() - 1; layer++) { int bias = 0; if (this.isLayerBiased(layer)) { bias = 1; } for (int fromIdx = 0; fromIdx < this.getLayerNeuronCount(layer) + bias; fromIdx++) { for (int toIdx = 0; toIdx < this.getLayerNeuronCount(layer + 1); toIdx++) { String type1 = "", type2 = ""; if (layer == 0) { type1 = "I"; type2 = "H" + (layer) + ","; } else { type1 = "H" + (layer - 1) + ","; if (layer == (this.getLayerCount() - 2)) { type2 = "O"; } else { type2 = "H" + (layer) + ","; } } if( bias ==1 && (fromIdx == this.getLayerNeuronCount(layer))) { type1 = "bias"; } else { type1 = type1 + fromIdx; } result.append(type1 + "-->" + type2 + toIdx + " : " + this.getWeight(layer, fromIdx, toIdx) + "\n"); } } } return result.toString(); } /** * Enable, or disable, a connection. * * @param fromLayer * The layer that contains the from neuron. * @param fromNeuron * The source neuron. * @param toNeuron * The target connection. * @param enable * True to enable, false to disable. */ public void enableConnection(final int fromLayer, final int fromNeuron, final int toNeuron, final boolean enable) { final double value = getWeight(fromLayer, fromNeuron, toNeuron); if (enable) { if (!this.structure.isConnectionLimited()) { return; } if (Math.abs(value) < this.structure.getConnectionLimit()) { setWeight(fromLayer, fromNeuron, toNeuron, RangeRandomizer.randomize(-1, 1)); } } else { if (!this.structure.isConnectionLimited()) { this.setProperty(BasicNetwork.TAG_LIMIT, BasicNetwork.DEFAULT_CONNECTION_LIMIT); this.structure.updateProperties(); } setWeight(fromLayer, fromNeuron, toNeuron, 0); } } /** * {@inheritDoc} */ @Override public int encodedArrayLength() { this.structure.requireFlat(); return this.structure.getFlat().getEncodeLength(); } /** * {@inheritDoc} */ @Override public void encodeToArray(final double[] encoded) { this.structure.requireFlat(); final double[] weights = this.structure.getFlat().getWeights(); if (weights.length != encoded.length) { throw new NeuralNetworkError( "Size mismatch, encoded array should be of length " + weights.length); } EngineArray.arrayCopy(weights, encoded); } /** * Compare the two neural networks. For them to be equal they must be of the * same structure, and have the same matrix values. * * @param other * The other neural network. * @return True if the two networks are equal. */ @Override public boolean equals(final Object other) { if (other == null) return false; if (other == this) return true; if (!(other instanceof BasicNetwork))return false; BasicNetwork otherMyClass = (BasicNetwork)other; return equals(otherMyClass, Encog.DEFAULT_PRECISION); } /** * Determine if this neural network is equal to another. Equal neural * networks have the same weight matrix and bias values, within a specified * precision. * * @param other * The other neural network. * @param precision * The number of decimal places to compare to. * @return True if the two neural networks are equal. */ public boolean equals(final BasicNetwork other, final int precision) { return NetworkCODEC.equals(this, other, precision); } /** * Get the activation function for the specified layer. * @param layer The layer. * @return The activation function. */ public ActivationFunction getActivation(final int layer) { this.structure.requireFlat(); final int layerNumber = getLayerCount() - layer - 1; return this.structure.getFlat().getActivationFunctions()[layerNumber]; } /** * {@inheritDoc} */ @Override public FlatNetwork getFlat() { return getStructure().getFlat(); } /** * {@inheritDoc} */ @Override public int getInputCount() { this.structure.requireFlat(); return getStructure().getFlat().getInputCount(); } /** * Get the bias activation for the specified layer. * @param l The layer. * @return The bias activation. */ public double getLayerBiasActivation(final int l) { if (!isLayerBiased(l)) { throw new NeuralNetworkError( "Error, the specified layer does not have a bias: " + l); } this.structure.requireFlat(); final int layerNumber = getLayerCount() - l - 1; final int layerOutputIndex = this.structure.getFlat().getLayerIndex()[layerNumber]; final int count = this.structure.getFlat().getLayerCounts()[layerNumber]; return this.structure.getFlat().getLayerOutput()[layerOutputIndex + count - 1]; } /** * @return The layer count. */ public int getLayerCount() { this.structure.requireFlat(); return this.structure.getFlat().getLayerCounts().length; } /** * Get the neuron count. * @param l The layer. * @return The neuron count. */ public int getLayerNeuronCount(final int l) { this.structure.requireFlat(); final int layerNumber = getLayerCount() - l - 1; return this.structure.getFlat().getLayerFeedCounts()[layerNumber]; } /** * Get the layer output for the specified neuron. * @param layer The layer. * @param neuronNumber The neuron number. * @return The output from the last call to compute. */ public double getLayerOutput(final int layer, final int neuronNumber) { this.structure.requireFlat(); final int layerNumber = getLayerCount() - layer - 1; final int index = this.structure.getFlat().getLayerIndex()[layerNumber] + neuronNumber; final double[] output = this.structure.getFlat().getLayerOutput(); if (index >= output.length) { throw new NeuralNetworkError("The layer index: " + index + " specifies an output index larger than the network has."); } return output[index]; } /** * Get the total (including bias and context) neuron cont for a layer. * @param l The layer. * @return The count. */ public int getLayerTotalNeuronCount(final int l) { this.structure.requireFlat(); final int layerNumber = getLayerCount() - l - 1; return this.structure.getFlat().getLayerCounts()[layerNumber]; } /** * {@inheritDoc} */ @Override public int getOutputCount() { this.structure.requireFlat(); return getStructure().getFlat().getOutputCount(); } /** * @return Get the structure of the neural network. The structure allows you * to quickly obtain synapses and layers without traversing the * network. */ public NeuralStructure getStructure() { return this.structure; } /** * Get the weight between the two layers. * @param fromLayer The from layer. * @param fromNeuron The from neuron. * @param toNeuron The to neuron. * @return The weight value. */ public double getWeight(final int fromLayer, final int fromNeuron, final int toNeuron) { this.structure.requireFlat(); return this.getFlat().getWeight(fromLayer, fromNeuron, toNeuron); } /** * Generate a hash code. * * @return THe hash code. */ @Override public int hashCode() { return super.hashCode(); } /** * Determine if the specified connection is enabled. * * @param layer * The layer to check. * @param fromNeuron * The source neuron. * @param toNeuron * THe target neuron. * @return True, if the connection is enabled, false otherwise. */ public boolean isConnected(final int layer, final int fromNeuron, final int toNeuron) { if (!this.structure.isConnectionLimited()) { return true; } final double value = this.getWeight(layer, fromNeuron, toNeuron); return (Math.abs(value) > this.structure.getConnectionLimit()); } /** * Determine if the specified layer is biased. * @param l The layer number. * @return True, if the layer is biased. */ public boolean isLayerBiased(final int l) { this.structure.requireFlat(); final int layerNumber = getLayerCount() - l - 1; return this.structure.getFlat().getLayerCounts()[layerNumber] != this.structure .getFlat().getLayerFeedCounts()[layerNumber]; } /** * Reset the weight matrix and the bias values. This will use a * Nguyen-Widrow randomizer with a range between -1 and 1. If the network * does not have an input, output or hidden layers, then Nguyen-Widrow * cannot be used and a simple range randomize between -1 and 1 will be * used. * */ @Override public void reset() { getRandomizer().randomize(this); } /** * Reset the weight matrix and the bias values. This will use a * RangeRandomizer with a range between -1 and 1. * */ @Override public void reset(final int seed) { (new ConsistentRandomizer(-1,1,seed)).randomize(this); } /** * Determines the randomizer used for resets. This will normally return a * Nguyen-Widrow randomizer with a range between -1 and 1. If the network * does not have an input, output or hidden layers, then Nguyen-Widrow * cannot be used and a simple range randomize between -1 and 1 will be * used. Range randomizer is also used if the activation function is not * TANH, Sigmoid, or the Elliott equivalents. * * @return the randomizer */ private Randomizer getRandomizer() { boolean useNWR = true; for(int i=0;i<this.getLayerCount();i++) { ActivationFunction af = getActivation(i); if( af.getClass()!=ActivationSigmoid.class && af.getClass()!=ActivationTANH.class && af.getClass()!=ActivationElliott.class && af.getClass()!=ActivationElliottSymmetric.class) { useNWR = false; } } if (getLayerCount() < 3) { useNWR = false; } if (useNWR) { return new NguyenWidrowRandomizer(); } else { return new RangeRandomizer(-1,1); } } /** * Sets the bias activation for every layer that supports bias. Make sure * that the network structure has been finalized before calling this method. * * @param activation * THe new activation. */ public void setBiasActivation(final double activation) { // first, see what mode we are on. If the network has not been // finalized, set the layers if (this.structure.getFlat() == null) { for (final Layer layer : this.structure.getLayers()) { if (layer.hasBias()) { layer.setBiasActivation(activation); } } } else { for (int i = 0; i < getLayerCount(); i++) { if (isLayerBiased(i)) { setLayerBiasActivation(i, activation); } } } } /** * Set the bias activation for the specified layer. * @param l The layer to use. * @param value The bias activation. */ public void setLayerBiasActivation(final int l, final double value) { if (!isLayerBiased(l)) { throw new NeuralNetworkError( "Error, the specified layer does not have a bias: " + l); } this.structure.requireFlat(); final int layerNumber = getLayerCount() - l - 1; final int layerOutputIndex = this.structure.getFlat().getLayerIndex()[layerNumber]; final int count = this.structure.getFlat().getLayerCounts()[layerNumber]; this.structure.getFlat().getLayerOutput()[layerOutputIndex + count - 1] = value; } /** * Set the weight between the two specified neurons. The bias neuron is always * the last neuron on a layer. * @param fromLayer The from layer. * @param fromNeuron The from neuron. * @param toNeuron The to neuron. * @param value The to value. */ public void setWeight(final int fromLayer, final int fromNeuron, final int toNeuron, final double value) { this.structure.requireFlat(); final int fromLayerNumber = getLayerCount() - fromLayer - 1; final int toLayerNumber = fromLayerNumber - 1; if (toLayerNumber < 0) { throw new NeuralNetworkError( "The specified layer is not connected to another layer: " + fromLayer); } final int weightBaseIndex = this.structure.getFlat().getWeightIndex()[toLayerNumber]; final int count = this.structure.getFlat().getLayerCounts()[fromLayerNumber]; final int weightIndex = weightBaseIndex + fromNeuron + (toNeuron * count); this.structure.getFlat().getWeights()[weightIndex] = value; } /** * {@inheritDoc} */ @Override public String toString() { final StringBuilder builder = new StringBuilder(); builder.append("[BasicNetwork: Layers="); int layers = 0; if( this.structure.getFlat()==null) { layers = this.structure.getLayers().size(); } else { layers = this.structure.getFlat().getLayerCounts().length; } builder.append(layers); builder.append("]"); return builder.toString(); } /** * {@inheritDoc} */ @Override public void updateProperties() { this.structure.updateProperties(); } /** * Validate the the specified targetLayer and neuron are valid. * @param targetLayer The target layer. * @param neuron The target neuron. */ public void validateNeuron(final int targetLayer, final int neuron) { getStructure().requireFlat(); getFlat().validateNeuron(targetLayer, neuron); } /** * Determine the winner for the specified input. This is the number of the * winning neuron. * * @param input * The input patter to present to the neural network. * @return The winning neuron. */ public int winner(final MLData input) { final MLData output = compute(input); return EngineArray.maxIndex(output.getData()); } /** * {@inheritDoc} */ @Override public String getFactoryType() { return MLMethodFactory.TYPE_FEEDFORWARD; } /** * {@inheritDoc} */ @Override public String getFactoryArchitecture() { StringBuilder result = new StringBuilder(); //?:B->SIGMOID->4:B->SIGMOID->? for(int currentLayer = 0; currentLayer< this.getLayerCount(); currentLayer++) { // need arrow from prvious levels? if( currentLayer>0 ) { result.append("->"); } // handle activation function if( currentLayer>0 && this.getActivation(currentLayer)!=null ) { ActivationFunction activationFunction = getActivation(currentLayer); result.append(activationFunction.getFactoryCode()); result.append("->"); } result.append(this.getLayerNeuronCount(currentLayer)); if( this.isLayerBiased(currentLayer) ) { result.append(":B"); } } return result.toString(); } }