/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ <@pp.dropOutputFile /> <#list cast.types as type> <#if type.major == "DecimalDenseDecimalSparse"> <@pp.changeOutputFile name="/org/apache/drill/exec/expr/fn/impl/gcast/Cast${type.from}${type.to}.java" /> <#include "/@includes/license.ftl" /> package org.apache.drill.exec.expr.fn.impl.gcast; <#include "/@includes/vv_imports.ftl" /> import org.apache.drill.exec.expr.DrillSimpleFunc; import org.apache.drill.exec.expr.annotations.FunctionTemplate; import org.apache.drill.exec.expr.annotations.FunctionTemplate.NullHandling; import org.apache.drill.exec.expr.annotations.Output; import org.apache.drill.exec.expr.annotations.Param; import org.apache.drill.exec.expr.holders.*; import org.apache.drill.exec.record.RecordBatch; import org.apache.drill.exec.expr.annotations.Workspace; import io.netty.buffer.ByteBuf; import io.netty.buffer.DrillBuf; import java.nio.ByteBuffer; /* * This class is generated using freemarker and the ${.template_name} template. */ @SuppressWarnings("unused") @FunctionTemplate(name = "cast${type.to?upper_case}", scope = FunctionTemplate.FunctionScope.SIMPLE, returnType = FunctionTemplate.ReturnType.DECIMAL_CAST, nulls = NullHandling.NULL_IF_NULL) public class Cast${type.from}${type.to} implements DrillSimpleFunc{ @Param ${type.from}Holder in; @Inject DrillBuf buffer; @Param BigIntHolder precision; @Param BigIntHolder scale; @Output ${type.to}Holder out; public void setup() { int size = (${type.arraySize} * (org.apache.drill.exec.util.DecimalUtility.INTEGER_SIZE)); buffer = buffer.reallocIfNeeded(size); } public void eval() { out.buffer = buffer; out.start = 0; // Re initialize the buffer everytime for (int i = 0; i < ${type.arraySize}; i++) { out.setInteger(i, 0, out.start, out.buffer); } out.scale = (int) scale.value; out.precision = (int) precision.value; out.setSign(in.getSign(in.start, in.buffer), out.start, out.buffer); /* We store base 1 Billion integers in our representation, which requires * 30 bits, but a typical integer requires 32 bits. In our dense representation * we shift bits around to utilize the two available bits, to get back to our sparse * representation rearrange the bits so that we use 32 bits represent the digits. */ byte[] intermediateBytes = new byte[(in.nDecimalDigits * org.apache.drill.exec.util.DecimalUtility.INTEGER_SIZE) + 1]; int[] mask = {0x03, 0x0F, 0x3F, 0xFF}; int[] reverseMask = {0xFC, 0xF0, 0xC0, 0x00}; <#if (type.from == "Decimal38Dense")> int maskIndex = 0; int shiftOrder = 6; byte shiftBits = 0x00; intermediateBytes[0] = (byte) (in.buffer.getByte(0) & 0x7F); <#elseif (type.from == "Decimal28Dense")> int maskIndex = 1; int shiftOrder = 4; byte shiftBits = (byte) ((in.buffer.getByte(0) & 0x03) << shiftOrder); intermediateBytes[0] = (byte) (((in.buffer.getByte(0) & 0x3C) & 0xFF) >>> 2); </#if> int intermediateIndex = 1; int inputIndex = in.start + 1; while (intermediateIndex < in.WIDTH) { intermediateBytes[intermediateIndex] = (byte) ((shiftBits) | (((in.buffer.getByte(inputIndex) & reverseMask[maskIndex]) & 0xFF) >>> (8 - shiftOrder))); shiftBits = (byte) ((in.buffer.getByte(inputIndex) & mask[maskIndex]) << shiftOrder); inputIndex++; intermediateIndex++; if (((intermediateIndex - 1) % org.apache.drill.exec.util.DecimalUtility.INTEGER_SIZE) == 0) { shiftBits = (byte) ((shiftBits & 0xFF) >>> 2); maskIndex++; shiftOrder -= 2; } } /* copy the last byte */ intermediateBytes[intermediateIndex] = shiftBits; /* We have shifted the bits around and now each digit is represented by 32 digits * Now we transfer the bytes into a integer array and separate out the scale and * integer part of the decimal. Also pad the scale part with zeroes if needed */ int[] intermediate = new int[(intermediateBytes.length/org.apache.drill.exec.util.DecimalUtility.INTEGER_SIZE) + 1]; java.nio.ByteBuffer wrapper = java.nio.ByteBuffer.wrap(intermediateBytes); intermediate[0] = wrapper.get(0); int intermediateIdx = 1; for (int i = 1; i < intermediate.length; i++) { intermediate[i] = wrapper.getInt(intermediateIdx); intermediateIdx += 4; } int actualDigits; int srcIndex = intermediate.length - 1; int dstIndex = out.nDecimalDigits - 1; // break the scale and integer part and pad zeroes if (in.scale > 0 && (actualDigits = (in.scale % org.apache.drill.exec.util.DecimalUtility.MAX_DIGITS)) > 0) { int paddedDigits = org.apache.drill.exec.util.DecimalUtility.MAX_DIGITS - actualDigits; int padding = (int) (Math.pow(10, paddedDigits)); int transferDigitMask = (int) (Math.pow(10, actualDigits)); /* copy the remaining scale over to the last deciml digit */ out.setInteger(dstIndex, ((intermediate[srcIndex] % transferDigitMask) * (padding)), out.start, out.buffer); dstIndex--; while (srcIndex > 0) { out.setInteger(dstIndex, ((intermediate[srcIndex]/transferDigitMask) + ((intermediate[srcIndex - 1] % transferDigitMask) * padding)), out.start, out.buffer); dstIndex--; srcIndex--; } out.setInteger(dstIndex, (intermediate[0]/transferDigitMask), out.start, out.buffer); } else { for (; srcIndex >= 0; srcIndex--, dstIndex--) out.setInteger(dstIndex, intermediate[srcIndex], out.start, out.buffer); } } } </#if> </#list>