/** * Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.tree; import static org.testng.Assert.assertEquals; import static org.testng.AssertJUnit.assertTrue; import org.testng.annotations.Test; import com.opengamma.analytics.financial.greeks.Greek; import com.opengamma.analytics.financial.greeks.GreekResultCollection; import com.opengamma.analytics.math.statistics.distribution.NormalDistribution; import com.opengamma.analytics.math.statistics.distribution.ProbabilityDistribution; import com.opengamma.util.test.TestGroup; /** * Test. */ @Test(groups = TestGroup.UNIT) public class CashOrNothingOptionFunctionProviderTest { private static final ProbabilityDistribution<Double> NORMAL = new NormalDistribution(0, 1); private static final BinomialTreeOptionPricingModel _model = new BinomialTreeOptionPricingModel(); private static final TrinomialTreeOptionPricingModel _modelTrinomial = new TrinomialTreeOptionPricingModel(); private static final double SPOT = 105.; private static final double[] STRIKES = new double[] {97., 105., 105.1, 114. }; private static final double TIME = 4.2; private static final double[] INTERESTS = new double[] {-0.01, 0.017, 0.05 }; private static final double[] VOLS = new double[] {0.05, 0.1, 0.5 }; private static final double[] DIVIDENDS = new double[] {0.005, 0.014 }; /** * */ @Test public void priceLatticeTrinomialTest() { final LatticeSpecification[] lattices = new LatticeSpecification[] {new CoxRossRubinsteinLatticeSpecification(), new JarrowRuddLatticeSpecification(), new TrigeorgisLatticeSpecification(), new TianLatticeSpecification() }; final boolean[] tfSet = new boolean[] {true, false }; for (final LatticeSpecification lattice : lattices) { for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 441; for (final double dividend : DIVIDENDS) { final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final double exactDiv = price(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double resDiv = _modelTrinomial.getPrice(lattice, function, SPOT, vol, interest, dividend); final double refDiv = Math.max(exactDiv, .1) * 1.e-1; assertEquals(resDiv, exactDiv, refDiv); } } } } } } } /** * */ @Test public void greekTrinomialTest() { final LatticeSpecification lattice = new TianLatticeSpecification(); final boolean[] tfSet = new boolean[] {true, false }; for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 1023; for (final double dividend : DIVIDENDS) { final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final GreekResultCollection resDiv = _modelTrinomial.getGreeks(lattice, function, SPOT, vol, interest, dividend); final double priceDiv = price(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refPriceDiv = Math.max(Math.abs(priceDiv), .1) * 1.e-1; assertEquals(resDiv.get(Greek.FAIR_PRICE), priceDiv, refPriceDiv); final double deltaDiv = delta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refDeltaDiv = Math.max(Math.abs(deltaDiv), 0.1) * 1.e-1; assertEquals(resDiv.get(Greek.DELTA), deltaDiv, refDeltaDiv); final double gammaDiv = gamma(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refGammaDiv = Math.max(Math.abs(gammaDiv), 0.1) * 1.e-1; assertEquals(resDiv.get(Greek.GAMMA), gammaDiv, refGammaDiv); final double thetaDiv = theta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refThetaDiv = Math.max(Math.abs(thetaDiv), 1.) * 1.e-1; assertEquals(resDiv.get(Greek.THETA), thetaDiv, refThetaDiv); } } } } } } /** * */ @Test public void priceLatticeTest() { final LatticeSpecification[] lattices = new LatticeSpecification[] {new CoxRossRubinsteinLatticeSpecification(), new JarrowRuddLatticeSpecification(), new TrigeorgisLatticeSpecification(), new JabbourKraminYoungLatticeSpecification(), new TianLatticeSpecification() }; final boolean[] tfSet = new boolean[] {true, false }; for (final LatticeSpecification lattice : lattices) { for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 631; for (final double dividend : DIVIDENDS) { final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final double exactDiv = price(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double resDiv = _model.getPrice(lattice, function, SPOT, vol, interest, dividend); final double refDiv = Math.max(exactDiv, 1.) * 1.e-1; assertEquals(resDiv, exactDiv, refDiv); } } } } } } } /** * */ @Test public void priceLeisenReimerTest() { final LatticeSpecification lattice = new LeisenReimerLatticeSpecification(); final boolean[] tfSet = new boolean[] {true, false }; for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 631; for (final double dividend : DIVIDENDS) { final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final double exactDiv = price(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double resDiv = _model.getPrice(lattice, function, SPOT, vol, interest, dividend); final double refDiv = Math.max(exactDiv, 1.) * 1.e-6; assertEquals(resDiv, exactDiv, refDiv); } } } } } } /** * The dividend is cash or proportional to asset price */ @Test public void priceDiscreteDividendTest() { final LatticeSpecification[] lattices = new LatticeSpecification[] {new CoxRossRubinsteinLatticeSpecification(), new JarrowRuddLatticeSpecification(), new TrigeorgisLatticeSpecification(), new JabbourKraminYoungLatticeSpecification(), new TianLatticeSpecification(), new LeisenReimerLatticeSpecification() }; final double[] propDividends = new double[] {0.01, 0.01, 0.01 }; final double[] cashDividends = new double[] {5., 10., 8. }; final double[] dividendTimes = new double[] {TIME / 6., TIME / 3., TIME / 2. }; final boolean[] tfSet = new boolean[] {true, false }; for (final LatticeSpecification lattice : lattices) { for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 631; final int nStepsTri = 231; final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final DividendFunctionProvider cashDividend = new CashDividendFunctionProvider(dividendTimes, cashDividends); final DividendFunctionProvider propDividend = new ProportionalDividendFunctionProvider(dividendTimes, propDividends); final double resSpot = SPOT * (1. - propDividends[0]) * (1. - propDividends[1]) * (1. - propDividends[2]); final double modSpot = SPOT - cashDividends[0] * Math.exp(-interest * dividendTimes[0]) - cashDividends[1] * Math.exp(-interest * dividendTimes[1]) - cashDividends[2] * Math.exp(-interest * dividendTimes[2]); final double exactProp = price(resSpot, strike, TIME, vol, interest, interest, isCall); final double appCash = price(modSpot, strike, TIME, vol, interest, interest, isCall); final double resProp = _model.getPrice(lattice, function, SPOT, vol, interest, propDividend); final double refProp = Math.max(exactProp, 1.) * 1.e-1; assertEquals(resProp, exactProp, refProp); final double resCash = _model.getPrice(lattice, function, SPOT, vol, interest, cashDividend); final double refCash = Math.max(appCash, 1.) * 1.e-1; assertEquals(resCash, appCash, refCash); if (lattice instanceof CoxRossRubinsteinLatticeSpecification || lattice instanceof JarrowRuddLatticeSpecification || lattice instanceof TrigeorgisLatticeSpecification || lattice instanceof TianLatticeSpecification) { final OptionFunctionProvider1D functionTri = new CashOrNothingOptionFunctionProvider(strike, TIME, nStepsTri, isCall); final double resPropTrinomial = _modelTrinomial.getPrice(lattice, functionTri, SPOT, vol, interest, propDividend); final double resCashTrinomial = _modelTrinomial.getPrice(lattice, functionTri, SPOT, vol, interest, cashDividend); assertEquals(resPropTrinomial, exactProp, Math.max(exactProp, 1.) * 1.e-1); assertEquals(resCashTrinomial, appCash, Math.max(appCash, 1.) * 1.e-1); } } } } } } } /** * Due to a problem of computation time, only LeisenReimerLatticeSpecification in the next test is kept switched on */ @Test(enabled = false) public void greekTest() { final LatticeSpecification[] lattices = new LatticeSpecification[] {new CoxRossRubinsteinLatticeSpecification(), new JarrowRuddLatticeSpecification(), new TrigeorgisLatticeSpecification(), new JabbourKraminYoungLatticeSpecification(), new TianLatticeSpecification() }; final boolean[] tfSet = new boolean[] {true, false }; for (final LatticeSpecification lattice : lattices) { for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 3117; //Slow convergence for (final double dividend : DIVIDENDS) { final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final GreekResultCollection resDiv = _model.getGreeks(lattice, function, SPOT, vol, interest, dividend); final double priceDiv = price(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refPriceDiv = Math.max(Math.abs(priceDiv), 1.) * 1.e-1; assertEquals(resDiv.get(Greek.FAIR_PRICE), priceDiv, refPriceDiv); final double deltaDiv = delta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refDeltaDiv = Math.max(Math.abs(deltaDiv), 1.) * 1.e-1; assertEquals(resDiv.get(Greek.DELTA), deltaDiv, refDeltaDiv); final double gammaDiv = gamma(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refGammaDiv = Math.max(Math.abs(gammaDiv), 1.) * 1.e-1; assertEquals(resDiv.get(Greek.GAMMA), gammaDiv, refGammaDiv); final double thetaDiv = theta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refThetaDiv = Math.max(Math.abs(thetaDiv), 1.) * 1.e-1; assertEquals(resDiv.get(Greek.THETA), thetaDiv, refThetaDiv); } } } } } } } /** * */ @Test public void greekLeisenReimerTest() { final LatticeSpecification lattice = new LeisenReimerLatticeSpecification(); final boolean[] tfSet = new boolean[] {true, false }; for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 631; for (final double dividend : DIVIDENDS) { final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final GreekResultCollection resDiv = _model.getGreeks(lattice, function, SPOT, vol, interest, dividend); final double priceDiv = price(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refPriceDiv = Math.max(Math.abs(priceDiv), 1.) * 1.e-6; assertEquals(resDiv.get(Greek.FAIR_PRICE), priceDiv, refPriceDiv); final double deltaDiv = delta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refDeltaDiv = Math.max(Math.abs(deltaDiv), 1.) * 1.e-2; assertEquals(resDiv.get(Greek.DELTA), deltaDiv, refDeltaDiv); final double gammaDiv = gamma(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refGammaDiv = Math.max(Math.abs(gammaDiv), 1.) * 1.e-2; assertEquals(resDiv.get(Greek.GAMMA), gammaDiv, refGammaDiv); final double thetaDiv = theta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double refThetaDiv = Math.max(Math.abs(thetaDiv), 1.) * 1.e-2; assertEquals(resDiv.get(Greek.THETA), thetaDiv, refThetaDiv); } } } } } } /** * The dividend is cash or proportional to asset price */ @Test public void greeksDiscreteDividendLatticeTest() { final LatticeSpecification[] lattices = new LatticeSpecification[] {new CoxRossRubinsteinLatticeSpecification(), new JarrowRuddLatticeSpecification(), new TrigeorgisLatticeSpecification(), new JabbourKraminYoungLatticeSpecification(), new TianLatticeSpecification(), new LeisenReimerLatticeSpecification() }; final double[] propDividends = new double[] {0.01, 0.03, 0.02 }; final double[] cashDividends = new double[] {1., 4., 1. }; final double[] dividendTimes = new double[] {TIME / 6., TIME / 3., TIME / 2. }; final boolean[] tfSet = new boolean[] {true, false }; for (final LatticeSpecification lattice : lattices) { for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { final int nSteps = 901; final int nStepsTri = 511; final double resSpot = SPOT * (1. - propDividends[0]) * (1. - propDividends[1]) * (1. - propDividends[2]); final double modSpot = SPOT - cashDividends[0] * Math.exp(-interest * dividendTimes[0]) - cashDividends[1] * Math.exp(-interest * dividendTimes[1]) - cashDividends[2] * Math.exp(-interest * dividendTimes[2]); final double exactPriceProp = price(resSpot, strike, TIME, vol, interest, interest, isCall); final double exactDeltaProp = delta(resSpot, strike, TIME, vol, interest, interest, isCall); final double exactGammaProp = gamma(resSpot, strike, TIME, vol, interest, interest, isCall); final double exactThetaProp = theta(resSpot, strike, TIME, vol, interest, interest, isCall); final double appPriceCash = price(modSpot, strike, TIME, vol, interest, interest, isCall); final double appDeltaCash = delta(modSpot, strike, TIME, vol, interest, interest, isCall); final double appGammaCash = gamma(modSpot, strike, TIME, vol, interest, interest, isCall); final double appThetaCash = theta(modSpot, strike, TIME, vol, interest, interest, isCall); final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, TIME, nSteps, isCall); final DividendFunctionProvider cashDividend = new CashDividendFunctionProvider(dividendTimes, cashDividends); final DividendFunctionProvider propDividend = new ProportionalDividendFunctionProvider(dividendTimes, propDividends); final GreekResultCollection resProp = _model.getGreeks(lattice, function, SPOT, vol, interest, propDividend); final GreekResultCollection resCash = _model.getGreeks(lattice, function, SPOT, vol, interest, cashDividend); assertEquals(resProp.get(Greek.FAIR_PRICE), exactPriceProp, Math.max(1., Math.abs(exactPriceProp)) * 1.e-1); assertEquals(resProp.get(Greek.DELTA), exactDeltaProp, Math.max(1., Math.abs(exactDeltaProp)) * 1.e-1); assertEquals(resProp.get(Greek.GAMMA), exactGammaProp, Math.max(1., Math.abs(exactGammaProp)) * 1.e-1); assertEquals(resProp.get(Greek.THETA), exactThetaProp, Math.max(1., Math.abs(exactThetaProp)));//theta is poorly approximated assertEquals(resCash.get(Greek.FAIR_PRICE), appPriceCash, Math.max(1., Math.abs(appPriceCash)) * 1.e-1); assertEquals(resCash.get(Greek.DELTA), appDeltaCash, Math.max(1., Math.abs(appDeltaCash)) * 1.e-1); assertEquals(resCash.get(Greek.GAMMA), appGammaCash, Math.max(1., Math.abs(appGammaCash)) * 1.e-1); assertEquals(resCash.get(Greek.THETA), appThetaCash, Math.max(1., Math.abs(appThetaCash)));//theta is poorly approximated if (lattice instanceof CoxRossRubinsteinLatticeSpecification || lattice instanceof JarrowRuddLatticeSpecification || lattice instanceof TrigeorgisLatticeSpecification || lattice instanceof TianLatticeSpecification) { final OptionFunctionProvider1D functionTri = new CashOrNothingOptionFunctionProvider(strike, TIME, nStepsTri, isCall); final GreekResultCollection resPropTrinomial = _modelTrinomial.getGreeks(lattice, functionTri, SPOT, vol, interest, propDividend); final GreekResultCollection resCashTrinomial = _modelTrinomial.getGreeks(lattice, functionTri, SPOT, vol, interest, cashDividend); assertEquals(resPropTrinomial.get(Greek.FAIR_PRICE), exactPriceProp, Math.max(1., Math.abs(exactPriceProp)) * 1.e-1); assertEquals(resPropTrinomial.get(Greek.DELTA), exactDeltaProp, Math.max(1., Math.abs(exactDeltaProp)) * 1.e-1); assertEquals(resPropTrinomial.get(Greek.GAMMA), exactGammaProp, Math.max(1., Math.abs(exactGammaProp)) * 1.e-1); assertEquals(resPropTrinomial.get(Greek.THETA), exactThetaProp, Math.max(1., Math.abs(exactThetaProp)));//theta is poorly approximated assertEquals(resCashTrinomial.get(Greek.FAIR_PRICE), appPriceCash, Math.max(1., Math.abs(appPriceCash)) * 1.e-1); assertEquals(resCashTrinomial.get(Greek.DELTA), appDeltaCash, Math.max(1., Math.abs(appDeltaCash)) * 1.e-1); assertEquals(resCashTrinomial.get(Greek.GAMMA), appGammaCash, Math.max(1., Math.abs(appGammaCash)) * 1.e-1); assertEquals(resCashTrinomial.get(Greek.THETA), appThetaCash, Math.max(1., Math.abs(appThetaCash)));//theta is poorly approximated } } } } } } } /** * non-constant volatility and interest rate */ @Test public void timeVaryingVolTest() { final LatticeSpecification lattice1 = new TimeVaryingLatticeSpecification(); final double[] time_set = new double[] {0.5, 1.2 }; final int steps = 801; final double[] vol = new double[steps]; final double[] rate = new double[steps]; final double[] dividend = new double[steps]; final int stepsTri = 661; final double[] volTri = new double[stepsTri]; final double[] rateTri = new double[stepsTri]; final double[] dividendTri = new double[stepsTri]; final double constA = 0.01; final double constB = 0.001; final double constC = 0.1; final double constD = 0.05; final boolean[] tfSet = new boolean[] {true, false }; for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double time : time_set) { for (int i = 0; i < steps; ++i) { rate[i] = constA + constB * i * time / steps; vol[i] = constC + constD * Math.sin(i * time / steps); dividend[i] = 0.005; } for (int i = 0; i < stepsTri; ++i) { rateTri[i] = constA + constB * i * time / steps; volTri[i] = constC + constD * Math.sin(i * time / steps); dividendTri[i] = 0.005; } final double rateRef = constA + 0.5 * constB * time; final double volRef = Math.sqrt(constC * constC + 0.5 * constD * constD + 2. * constC * constD / time * (1. - Math.cos(time)) - constD * constD * 0.25 / time * Math.sin(2. * time)); final OptionFunctionProvider1D function = new CashOrNothingOptionFunctionProvider(strike, time, steps, isCall); final double resPrice = _model.getPrice(function, SPOT, vol, rate, dividend); final GreekResultCollection resGreeks = _model.getGreeks(function, SPOT, vol, rate, dividend); final double resPriceConst = _model.getPrice(lattice1, function, SPOT, volRef, rateRef, dividend[0]); final GreekResultCollection resGreeksConst = _model.getGreeks(lattice1, function, SPOT, volRef, rateRef, dividend[0]); assertEquals(resPrice, resPriceConst, Math.abs(resPriceConst) * 1.e-1); assertEquals(resGreeks.get(Greek.FAIR_PRICE), resGreeksConst.get(Greek.FAIR_PRICE), Math.max(Math.abs(resGreeksConst.get(Greek.FAIR_PRICE)), 0.1) * 0.1); assertEquals(resGreeks.get(Greek.DELTA), resGreeksConst.get(Greek.DELTA), Math.max(Math.abs(resGreeksConst.get(Greek.DELTA)), 0.1) * 0.1); assertEquals(resGreeks.get(Greek.GAMMA), resGreeksConst.get(Greek.GAMMA), Math.max(Math.abs(resGreeksConst.get(Greek.GAMMA)), 0.1) * 0.1); assertEquals(resGreeks.get(Greek.THETA), resGreeksConst.get(Greek.THETA), Math.max(Math.abs(resGreeksConst.get(Greek.THETA)), 0.1)); final OptionFunctionProvider1D functionTri = new CashOrNothingOptionFunctionProvider(strike, time, stepsTri, isCall); final double resPriceTrinomial = _modelTrinomial.getPrice(functionTri, SPOT, volTri, rateTri, dividendTri); assertEquals(resPriceTrinomial, resPriceConst, Math.max(Math.abs(resPriceConst), .5) * 1.e-1); final GreekResultCollection resGreeksTrinomial = _modelTrinomial.getGreeks(functionTri, SPOT, volTri, rateTri, dividendTri); assertEquals(resGreeksTrinomial.get(Greek.FAIR_PRICE), resGreeksConst.get(Greek.FAIR_PRICE), Math.max(Math.abs(resGreeksConst.get(Greek.FAIR_PRICE)), 0.5) * 0.1); assertEquals(resGreeksTrinomial.get(Greek.DELTA), resGreeksConst.get(Greek.DELTA), Math.max(Math.abs(resGreeksConst.get(Greek.DELTA)), 0.5) * 0.1); assertEquals(resGreeksTrinomial.get(Greek.GAMMA), resGreeksConst.get(Greek.GAMMA), Math.max(Math.abs(resGreeksConst.get(Greek.GAMMA)), 0.5) * 0.1); // assertEquals(resGreeksTrinomial.get(Greek.THETA), resGreeksConst.get(Greek.THETA), Math.max(Math.abs(resGreeksConst.get(Greek.THETA)), 1.)); } } } } /** * */ @Test public void hashCodeEqualsTest() { final OptionFunctionProvider1D ref = new CashOrNothingOptionFunctionProvider(103., 1., 1003, true); final OptionFunctionProvider1D[] function = new OptionFunctionProvider1D[] {ref, new CashOrNothingOptionFunctionProvider(103., 1., 1003, true), new CashOrNothingOptionFunctionProvider(103., 1., 1003, true), new AmericanVanillaOptionFunctionProvider(103., 1., 1003, true), null }; final int len = function.length; for (int i = 0; i < len; ++i) { if (ref.equals(function[i])) { assertTrue(ref.hashCode() == function[i].hashCode()); } } for (int i = 0; i < len - 1; ++i) { assertTrue(function[i].equals(ref) == ref.equals(function[i])); } } private double price(final double spot, final double strike, final double time, final double vol, final double interest, final double cost, final boolean isCall) { final double d = (Math.log(spot / strike) + (cost - 0.5 * vol * vol) * time) / vol / Math.sqrt(time); final double sign = isCall ? 1. : -1.; return Math.exp((-interest) * time) * NORMAL.getCDF(sign * d); } private double delta(final double spot, final double strike, final double time, final double vol, final double interest, final double cost, final boolean isCall) { final double d = (Math.log(spot / strike) + (cost - 0.5 * vol * vol) * time) / vol / Math.sqrt(time); final double sign = isCall ? 1. : -1.; return Math.exp((-interest) * time) * (sign * NORMAL.getPDF(d) / spot / vol / Math.sqrt(time)); } private double gamma(final double spot, final double strike, final double time, final double vol, final double interest, final double cost, final boolean isCall) { final double d = (Math.log(spot / strike) + (cost - 0.5 * vol * vol) * time) / vol / Math.sqrt(time); final double sign = isCall ? 1. : -1.; return -sign * (Math.exp((-interest) * time) * NORMAL.getPDF(d) * (1. + d / vol / Math.sqrt(time)) / spot / spot / vol / Math.sqrt(time)); } private double theta(final double spot, final double strike, final double time, final double vol, final double interest, final double cost, final boolean isCall) { final double d = (Math.log(spot / strike) + (cost - 0.5 * vol * vol) * time) / vol / Math.sqrt(time); final double sign = isCall ? 1. : -1.; final double div = 0.5 * (-Math.log(spot / strike) / Math.pow(time, 1.5) + (cost - 0.5 * vol * vol) / Math.pow(time, 0.5)) / vol; return interest * Math.exp((-interest) * time) * NORMAL.getCDF(sign * d) - sign * Math.exp((-interest) * time) * NORMAL.getPDF(d) * div; } /** * test for analytic formula */ @Test(enabled = false) public void functionTest() { final boolean[] tfSet = new boolean[] {true, false }; final double eps = 1.e-6; for (final boolean isCall : tfSet) { for (final double strike : STRIKES) { for (final double interest : INTERESTS) { for (final double vol : VOLS) { for (final double dividend : DIVIDENDS) { final double delta = delta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double gamma = gamma(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double theta = theta(SPOT, strike, TIME, vol, interest, interest - dividend, isCall); final double upSpot = price(SPOT + eps, strike, TIME, vol, interest, interest - dividend, isCall); final double downSpot = price(SPOT - eps, strike, TIME, vol, interest, interest - dividend, isCall); final double upSpotDelta = delta(SPOT + eps, strike, TIME, vol, interest, interest - dividend, isCall); final double downSpotDelta = delta(SPOT - eps, strike, TIME, vol, interest, interest - dividend, isCall); final double upTime = price(SPOT, strike, TIME + eps, vol, interest, interest - dividend, isCall); final double downTime = price(SPOT, strike, TIME - eps, vol, interest, interest - dividend, isCall); assertEquals(delta, 0.5 * (upSpot - downSpot) / eps, eps); assertEquals(gamma, 0.5 * (upSpotDelta - downSpotDelta) / eps, eps); assertEquals(theta, -0.5 * (upTime - downTime) / eps, eps); } } } } } } }