/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.volatility.smile.function; import java.util.Arrays; import org.apache.commons.lang.Validate; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com.google.common.primitives.Doubles; import com.opengamma.analytics.financial.model.option.pricing.analytic.formula.EuropeanVanillaOption; import com.opengamma.analytics.math.FunctionUtils; import com.opengamma.analytics.math.MathException; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.lang.annotation.ExternalFunction; import com.opengamma.util.CompareUtils; /** * Class with the Hagan et al SABR volatility function. * Reference: Hagan, P.; Kumar, D.; Lesniewski, A. & Woodward, D. "Managing smile risk", Wilmott Magazine, 2002, September, 84-108 */ public class SABRHaganVolatilityFunction extends VolatilityFunctionProvider<SABRFormulaData> { /** * Logger. */ private static final Logger s_logger = LoggerFactory.getLogger(SABRHaganVolatilityFunction.class); private static final double CUTOFF_MONEYNESS = 1e-12; //changed from 1e-6 on 3/3/2012 R white private static final double SMALL_Z = 1e-6; private static final double LARGE_NEG_Z = -1e6; private static final double LARGE_POS_Z = 1e8; private static final double BETA_EPS = 1e-8; private static final double RHO_EPS = 1e-5; private static final double RHO_EPS_NEGATIVE = 1e-8; private static final double ATM_EPS = 1e-7; // private static final double EPS = 1e-15; @Override public Function1D<SABRFormulaData, Double> getVolatilityFunction(final EuropeanVanillaOption option, final double forward) { Validate.notNull(option, "option"); Validate.isTrue(forward >= 0.0, "forward must be greater than zero"); return new Function1D<SABRFormulaData, Double>() { @Override public final Double evaluate(final SABRFormulaData data) { Validate.notNull(data, "data"); return getVolatility(option, forward, data); } }; } @Override public Function1D<SABRFormulaData, double[]> getVolatilityAdjointFunction(final EuropeanVanillaOption option, final double forward) { Validate.notNull(option, "option"); Validate.isTrue(forward >= 0.0, "forward must be greater than zero"); return new Function1D<SABRFormulaData, double[]>() { @Override public double[] evaluate(final SABRFormulaData data) { Validate.notNull(data, "data"); return getVolatilityAdjoint(option, forward, data); } }; } @Override public Function1D<SABRFormulaData, double[][]> getVolatilityAdjointFunction(final double forward, final double[] strikes, final double timeToExpiry) { return getVolatilityAdjointFunctionByCallingSingleStrikes(forward, strikes, timeToExpiry); } @Override public Function1D<SABRFormulaData, double[]> getModelAdjointFunction(final EuropeanVanillaOption option, final double forward) { Validate.notNull(option, "option"); Validate.isTrue(forward >= 0.0, "forward must be greater than zero"); return new Function1D<SABRFormulaData, double[]>() { @Override public double[] evaluate(final SABRFormulaData data) { Validate.notNull(data, "data"); return getVolatilityModelAdjoint(option, forward, data); } }; } @Override public Function1D<SABRFormulaData, double[][]> getModelAdjointFunction(final double forward, final double[] strikes, final double timeToExpiry) { return getModelAdjointFunctionByCallingSingleStrikes(forward, strikes, timeToExpiry); } /** * Standard Hagan formula for log-normal vol * @param option The option. * @param forward The forward value of the underlying * @param data The SABR data. * @return The log-normal volatility */ public double getVolatility(final EuropeanVanillaOption option, final double forward, final SABRFormulaData data) { final double timeToExpiry = option.getTimeToExpiry(); final double strike = option.getStrike(); final double alpha = data.getAlpha(); final double beta = data.getBeta(); final double rho = data.getRho(); final double nu = data.getNu(); if (alpha == 0.0) { return 0.0; } final double cutoff = forward * CUTOFF_MONEYNESS; final double k; if (strike < cutoff) { s_logger.info("Given strike of {} is less than cutoff at {}, therefore the strike is taken as {}", new Object[] {strike, cutoff, cutoff }); k = cutoff; } else { k = strike; } double vol, z, zOverChi; final double beta1 = 1 - beta; if (CompareUtils.closeEquals(forward, k, ATM_EPS)) { final double f1 = Math.pow(forward, beta1); vol = alpha * (1 + timeToExpiry * (beta1 * beta1 * alpha * alpha / 24 / f1 / f1 + rho * alpha * beta * nu / 4 / f1 + nu * nu * (2 - 3 * rho * rho) / 24)) / f1; } else { if (CompareUtils.closeEquals(beta, 0, BETA_EPS)) { final double ln = Math.log(forward / k); z = nu * Math.sqrt(forward * k) * ln / alpha; zOverChi = getZOverChi(rho, z); vol = alpha * ln * zOverChi * (1 + timeToExpiry * (alpha * alpha / forward / k + nu * nu * (2 - 3 * rho * rho)) / 24) / (forward - k); } else if (CompareUtils.closeEquals(beta, 1, BETA_EPS)) { final double ln = Math.log(forward / k); z = nu * ln / alpha; zOverChi = getZOverChi(rho, z); vol = alpha * zOverChi * (1 + timeToExpiry * (rho * alpha * nu / 4 + nu * nu * (2 - 3 * rho * rho) / 24)); } else { final double ln = Math.log(forward / k); final double f1 = Math.pow(forward * k, beta1); final double f1Sqrt = Math.sqrt(f1); final double lnBetaSq = Math.pow(beta1 * ln, 2); z = nu * f1Sqrt * ln / alpha; zOverChi = getZOverChi(rho, z); final double first = alpha / (f1Sqrt * (1 + lnBetaSq / 24 + lnBetaSq * lnBetaSq / 1920)); final double second = zOverChi; final double third = 1 + timeToExpiry * (beta1 * beta1 * alpha * alpha / 24 / f1 + rho * nu * beta * alpha / 4 / f1Sqrt + nu * nu * (2 - 3 * rho * rho) / 24); vol = first * second * third; } } //There is nothing to prevent the nu * nu * (2 - 3 * rho * rho) / 24 part taking the third term, and hence the volatility negative return vol; // return Math.max(0.0, vol); } @ExternalFunction public double getVolatility(final double forward, final double strike, final double timeToExpiry, final double alpha, final double beta, final double rho, final double nu) { Validate.isTrue(forward > 0, "Forward must be > 0"); final EuropeanVanillaOption option = new EuropeanVanillaOption(strike, timeToExpiry, true); final SABRFormulaData data = new SABRFormulaData(alpha, beta, rho, nu); return getVolatility(option, forward, data); } /** * Gets the volatility sensitivity to the SABr parameters * @param option The option. * @param forward The forward value of the underlying * @param data The SABR data. * @return array with alpha, beta, rho and nu sensitivities */ public double[] getVolatilityModelAdjoint(final EuropeanVanillaOption option, final double forward, final SABRFormulaData data) { final double[] volatilityAdjoint = new double[4]; final double alpha = data.getAlpha(); double strike = option.getStrike(); final double cutoff = forward * CUTOFF_MONEYNESS; if (strike < cutoff) { s_logger.info("Given strike of {} is less than cutoff at {}, therefore the strike is taken as {}", new Object[] {strike, cutoff, cutoff }); strike = cutoff; } final double timeToExpiry = option.getTimeToExpiry(); final double beta = data.getBeta(); final double betaStar = 1 - beta; final double rho = data.getRho(); final double nu = data.getNu(); if (alpha == 0.0) { Arrays.fill(volatilityAdjoint, 0.0); if (CompareUtils.closeEquals(forward, strike, ATM_EPS)) { //TODO should this is relative volatilityAdjoint[3] = (1 + (2 - 3 * rho * rho) * nu * nu / 24 * timeToExpiry) / Math.pow(forward, betaStar); } else { //for non-atm options the alpha sensitivity at alpha = 0 is infinite. Returning this will most likely break calibrations, // so we return an arbitrary large number volatilityAdjoint[3] = 1e7; } return volatilityAdjoint; } // Implementation note: Forward sweep. final double sfK = Math.pow(forward * strike, betaStar / 2); final double lnrfK = Math.log(forward / strike); final double z = nu / alpha * sfK * lnrfK; final double sf1 = sfK * (1 + betaStar * betaStar / 24 * (lnrfK * lnrfK) + Math.pow(betaStar, 4) / 1920 * Math.pow(lnrfK, 4)); final double sf2 = (1 + (Math.pow(betaStar * alpha / sfK, 2) / 24 + (rho * beta * nu * alpha) / (4 * sfK) + (2 - 3 * rho * rho) * nu * nu / 24) * timeToExpiry); // Implementation note: Backward sweep. final double[] zOverChi = zOverChiWithDev(rho, z); final double vBar = 1; final double sf2Bar = alpha / sf1 * zOverChi[0] * vBar; final double sf1Bar = -alpha / (sf1 * sf1) * zOverChi[0] * sf2 * vBar; final double rzxzBar = alpha / sf1 * sf2 * vBar; final double zBar = zOverChi[2] * rzxzBar; // double xzBar = 0; final double sfKBar = nu / alpha * lnrfK * zBar + sf1 / sfK * sf1Bar - (Math.pow(betaStar * alpha, 2) / Math.pow(sfK, 3) / 12 + (rho * beta * nu * alpha) / 4 / (sfK * sfK)) * timeToExpiry * sf2Bar; final double nuBar = 1 / alpha * sfK * lnrfK * zBar + ((rho * beta * alpha) / (4 * sfK) + (2 - 3 * rho * rho) * nu / 12) * timeToExpiry * sf2Bar; final double rhoBar = zOverChi[1] * rzxzBar + ((beta * nu * alpha) / (4 * sfK) - rho * nu * nu / 4) * timeToExpiry * sf2Bar; final double alphaBar = -nu / (alpha * alpha) * sfK * lnrfK * zBar + ((betaStar * alpha / sfK) * (betaStar / sfK) / 12 + (rho * beta * nu) / (4 * sfK)) * timeToExpiry * sf2Bar + 1 / sf1 * zOverChi[0] * sf2 * vBar; final double betaBar = -0.5 * Math.log(forward * strike) * sfK * sfKBar - sfK * (betaStar / 12 * (lnrfK * lnrfK) + Math.pow(betaStar, 3) / 480 * Math.pow(lnrfK, 4)) * sf1Bar + (-betaStar * alpha * alpha / sfK / sfK / 12 + rho * nu * alpha / 4 / sfK) * timeToExpiry * sf2Bar; volatilityAdjoint[0] = alphaBar; volatilityAdjoint[1] = betaBar; volatilityAdjoint[2] = rhoBar; volatilityAdjoint[3] = nuBar; return volatilityAdjoint; } /** * Return the Black implied volatility in the SABR model and its derivatives. * @param option The option. * @param forward The forward value of the underlying * @param data The SABR data. * @return An array with [0] the volatility, [1] Derivative w.r.t the forward, [2] the derivative w.r.t the strike, [3] the derivative w.r.t. to alpha, * [4] the derivative w.r.t. to beta, [5] the derivative w.r.t. to rho, [6] the derivative w.r.t. to nu */ public double[] getVolatilityAdjoint(final EuropeanVanillaOption option, final double forward, final SABRFormulaData data) { /** * The array storing the price and derivatives. */ final double[] volatilityAdjoint = new double[7]; final double alpha = data.getAlpha(); double strike = option.getStrike(); final double cutoff = forward * CUTOFF_MONEYNESS; if (strike < cutoff) { s_logger.info("Given strike of {} is less than cutoff at {}, therefore the strike is taken as {}", new Object[] {strike, cutoff, cutoff }); strike = cutoff; } final double timeToExpiry = option.getTimeToExpiry(); final double beta = data.getBeta(); final double betaStar = 1 - beta; final double rho = data.getRho(); final double nu = data.getNu(); final double rhoStar = 1.0 - rho; if (alpha == 0.0) { Arrays.fill(volatilityAdjoint, 0.0); if (CompareUtils.closeEquals(forward, strike, ATM_EPS)) { //TODO should this is relative volatilityAdjoint[3] = (1 + (2 - 3 * rho * rho) * nu * nu / 24 * timeToExpiry) / Math.pow(forward, betaStar); } else { //for non-atm options the alpha sensitivity at alpha = 0 is infinite. Returning this will most likely break calibrations, // so we return an arbitrary large number volatilityAdjoint[3] = 1e7; } return volatilityAdjoint; } // Implementation note: Forward sweep. final double sfK = Math.pow(forward * strike, betaStar / 2); final double lnrfK = Math.log(forward / strike); final double z = nu / alpha * sfK * lnrfK; double rzxz; double xz = 0; if (CompareUtils.closeEquals(z, 0.0, SMALL_Z)) { rzxz = 1.0 - 0.5 * z * rho; //small z expansion to z^2 terms } else { if (CompareUtils.closeEquals(rhoStar, 0.0, RHO_EPS)) { if (z >= 1.0) { if (rhoStar == 0.0) { rzxz = 0.0; xz = Double.POSITIVE_INFINITY; } else { xz = (Math.log(2 * (z - 1)) - Math.log(rhoStar)); rzxz = z / xz; } } else { xz = -Math.log(1 - z) - 0.5 * Math.pow(z / (z - 1.0), 2) * rhoStar; rzxz = z / xz; } } else { double arg; if (z < LARGE_NEG_Z) { arg = (rho * rho - 1) / 2 / z; //get rounding errors due to fine balanced cancellation for very large negative z } else if (z > LARGE_POS_Z) { arg = 2 * (z - rho); } else { arg = (Math.sqrt(1 - 2 * rho * z + z * z) + z - rho); } if (arg <= 0.0) { //Mathematically this cannot be less than zero, but you know what computers are like. rzxz = 0.0; } else { xz = Math.log(arg / (1 - rho)); rzxz = z / xz; } } } final double sf1 = sfK * (1 + betaStar * betaStar / 24 * (lnrfK * lnrfK) + Math.pow(betaStar, 4) / 1920 * Math.pow(lnrfK, 4)); final double sf2 = (1 + (Math.pow(betaStar * alpha / sfK, 2) / 24 + (rho * beta * nu * alpha) / (4 * sfK) + (2 - 3 * rho * rho) * nu * nu / 24) * timeToExpiry); volatilityAdjoint[0] = alpha / sf1 * rzxz * sf2; // Implementation note: Backward sweep. final double vBar = 1; final double sf2Bar = alpha / sf1 * rzxz * vBar; final double sf1Bar = -alpha / (sf1 * sf1) * rzxz * sf2 * vBar; final double rzxzBar = alpha / sf1 * sf2 * vBar; double zBar; double xzBar = 0.0; if (CompareUtils.closeEquals(z, 0.0, SMALL_Z)) { zBar = -rho / 2 * rzxzBar; } else { if (CompareUtils.closeEquals(rhoStar, 0.0, RHO_EPS)) { if (z >= 1.0) { if (z == 1.0) { zBar = 0.0; } else { final double chiDz = 1 / (z - 1); xzBar = -rzxzBar * z / (xz * xz); zBar = volatilityAdjoint[0] / z + chiDz * xzBar; } } else { zBar = -1.0 / Math.log(1 - z) * (1 + z / Math.log(1 - z) / (1 - z)) * rzxzBar; xzBar = -z / (xz * xz) * rzxzBar; } } else { if (z < LARGE_NEG_Z) { zBar = 1 / xz * rzxzBar + xzBar / (xz * xz) * rzxzBar; } else if (z > LARGE_POS_Z) { zBar = 1 / xz * rzxzBar - xzBar / (xz * xz) * rzxzBar; } else { xzBar = -z / (xz * xz) * rzxzBar; zBar = 1 / xz * rzxzBar + 1 / ((Math.sqrt(1 - 2 * rho * z + z * z) + z - rho)) * (0.5 * Math.pow(1 - 2 * rho * z + z * z, -0.5) * (-2 * rho + 2 * z) + 1) * xzBar; } } } final double lnrfKBar = sfK * (betaStar * betaStar / 12 * lnrfK + Math.pow(betaStar, 4) / 1920 * 4 * Math.pow(lnrfK, 3)) * sf1Bar + nu / alpha * sfK * zBar; final double sfKBar = nu / alpha * lnrfK * zBar + sf1 / sfK * sf1Bar - (Math.pow(betaStar * alpha, 2) / Math.pow(sfK, 3) / 12 + (rho * beta * nu * alpha) / 4 / (sfK * sfK)) * timeToExpiry * sf2Bar; final double strikeBar = -1 / strike * lnrfKBar + betaStar * sfK / (2 * strike) * sfKBar; final double forwardBar = 1 / forward * lnrfKBar + betaStar * sfK / (2 * forward) * sfKBar; final double nuBar = 1 / alpha * sfK * lnrfK * zBar + ((rho * beta * alpha) / (4 * sfK) + (2 - 3 * rho * rho) * nu / 12) * timeToExpiry * sf2Bar; double rhoBar; if (Math.abs(forward - strike) < ATM_EPS) { rhoBar = -z / 2 * rzxzBar; } else { if (CompareUtils.closeEquals(rhoStar, 0.0, RHO_EPS)) { if (z >= 1) { if (rhoStar == 0.0) { rhoBar = Double.NEGATIVE_INFINITY; //the derivative at rho = 1 is infinite - this sets it to some arbitrary large number } else { rhoBar = xzBar * (1.0 / rhoStar + (0.5 - z) / (z - 1.0) / (z - 1.0)); } } else { rhoBar = (0.5 * Math.pow(z / (1 - z), 2) + 0.25 * (z - 4.0) * Math.pow(z / (1.0 - z), 3) / (1.0 - z) * rhoStar) * xzBar; } } else { rhoBar = (1 / (Math.sqrt(1 - 2 * rho * z + z * z) + z - rho) * (-Math.pow(1 - 2 * rho * z + z * z, -0.5) * z - 1) + 1 / rhoStar) * xzBar; } } rhoBar += ((beta * nu * alpha) / (4 * sfK) - rho * nu * nu / 4) * timeToExpiry * sf2Bar; final double alphaBar = -nu / (alpha * alpha) * sfK * lnrfK * zBar + ((betaStar * alpha / sfK) * (betaStar / sfK) / 12 + (rho * beta * nu) / (4 * sfK)) * timeToExpiry * sf2Bar + 1 / sf1 * rzxz * sf2 * vBar; final double betaBar = -0.5 * Math.log(forward * strike) * sfK * sfKBar - sfK * (betaStar / 12 * (lnrfK * lnrfK) + Math.pow(betaStar, 3) / 480 * Math.pow(lnrfK, 4)) * sf1Bar + (-betaStar * alpha * alpha / sfK / sfK / 12 + rho * nu * alpha / 4 / sfK) * timeToExpiry * sf2Bar; volatilityAdjoint[1] = forwardBar; volatilityAdjoint[2] = strikeBar; volatilityAdjoint[3] = alphaBar; volatilityAdjoint[4] = betaBar; volatilityAdjoint[5] = rhoBar; volatilityAdjoint[6] = nuBar; return volatilityAdjoint; } /** * Computes the first and second order derivatives of the Black implied volatility in the SABR model. * Around ATM, a first order expansion is used to due to some 0/0-type indetermination. The second order derivative produced is poor around ATM. * @param option The option. * @param forward the forward value of the underlying * @param data The SABR data. * @param volatilityD The array used to return the first order derivatives. [0] Derivative w.r.t the forward, [1] the derivative w.r.t the strike, [2] the derivative w.r.t. to alpha, * [3] the derivative w.r.t. to beta, [4] the derivative w.r.t. to rho, [5] the derivative w.r.t. to nu * @param volatilityD2 The array of array used to return the second order derivative. Only the second order derivative with respect to the forward and strike are implemented. * [0][0] forward-forward; [0][1] forward-strike; [1][1] strike-strike. * @return The Black implied volatility. */ public double getVolatilityAdjoint2(final EuropeanVanillaOption option, final double forward, final SABRFormulaData data, final double[] volatilityD, final double[][] volatilityD2) { final double k = Math.max(option.getStrike(), 0.000001); final double theta = option.getTimeToExpiry(); final double alpha = data.getAlpha(); final double beta = data.getBeta(); final double rho = data.getRho(); final double nu = data.getNu(); // Forward final double h0 = (1 - beta) / 2; final double h1 = forward * k; final double h1h0 = Math.pow(h1, h0); final double h12 = h1h0 * h1h0; final double h2 = Math.log(forward / k); final double h22 = h2 * h2; final double h23 = h22 * h2; final double h24 = h23 * h2; final double f1 = h1h0 * (1 + h0 * h0 / 6.0 * (h22 + h0 * h0 / 20.0 * h24)); final double f2 = nu / alpha * h1h0 * h2; final double f3 = h0 * h0 / 6.0 * alpha * alpha / h12 + rho * beta * nu * alpha / 4.0 / h1h0 + (2 - 3 * rho * rho) / 24.0 * nu * nu; final double sqrtf2 = Math.sqrt(1 - 2 * rho * f2 + f2 * f2); double f2x = 0.0; double x = 0.0, xp = 0, xpp = 0; if (CompareUtils.closeEquals(f2, 0.0, SMALL_Z)) { f2x = 1.0 - 0.5 * f2 * rho; //small f2 expansion to f2^2 terms } else { if (CompareUtils.closeEquals(rho, 1.0, RHO_EPS)) { x = f2 < 1.0 ? -Math.log(1.0 - f2) - 0.5 * Math.pow(f2 / (f2 - 1.0), 2) * (1.0 - rho) : Math.log(2.0 * f2 - 2.0) - Math.log(1.0 - rho); } else { x = Math.log((sqrtf2 + f2 - rho) / (1 - rho)); } xp = 1. / sqrtf2; xpp = (rho - f2) / Math.pow(sqrtf2, 3.0); f2x = f2 / x; } final double sigma = alpha / f1 * f2x * (1 + f3 * theta); // First level final double h0Dbeta = -0.5; final double sigmaDf1 = -sigma / f1; double sigmaDf2 = 0; if (CompareUtils.closeEquals(f2, 0.0, SMALL_Z)) { sigmaDf2 = alpha / f1 * (1 + f3 * theta) * -0.5 * rho; } else { sigmaDf2 = alpha / f1 * (1 + f3 * theta) * (1.0 / x - f2 * xp / (x * x)); } final double sigmaDf3 = alpha / f1 * f2x * theta; final double sigmaDf4 = f2x / f1 * (1 + f3 * theta); final double sigmaDx = -alpha / f1 * f2 / (x * x) * (1 + f3 * theta); final double[][] sigmaD2ff = new double[3][3]; sigmaD2ff[0][0] = -sigmaDf1 / f1 + sigma / (f1 * f1); //OK sigmaD2ff[0][1] = -sigmaDf2 / f1; sigmaD2ff[0][2] = -sigmaDf3 / f1; if (CompareUtils.closeEquals(f2, 0.0, SMALL_Z)) { sigmaD2ff[1][2] = alpha / f1 * -0.5 * rho * theta; } else { sigmaD2ff[1][1] = alpha / f1 * (1 + f3 * theta) * (-2 * xp / (x * x) - f2 * xpp / (x * x) + 2 * f2 * xp * xp / (x * x * x)); sigmaD2ff[1][2] = alpha / f1 * theta * (1.0 / x - f2 * xp / (x * x)); } sigmaD2ff[2][2] = 0.0; // final double sigma = alpha / f1 * f2x * (1 + f3 * theta); // Second level final double[] f1Dh = new double[3]; final double[] f2Dh = new double[3]; final double[] f3Dh = new double[3]; f1Dh[0] = h1h0 * (h0 * (h22 / 3.0 + h0 * h0 / 40.0 * h24)) + Math.log(h1) * f1; f1Dh[1] = h0 * f1 / h1; f1Dh[2] = h1h0 * (h0 * h0 / 6.0 * (2.0 * h2 + h0 * h0 / 5.0 * h23)); f2Dh[0] = Math.log(h1) * f2; f2Dh[1] = h0 * f2 / h1; f2Dh[2] = nu / alpha * h1h0; f3Dh[0] = h0 / 3.0 * alpha * alpha / h12 - 2 * h0 * h0 / 6.0 * alpha * alpha / h12 * Math.log(h1) - rho * beta * nu * alpha / 4.0 / h1h0 * Math.log(h1); f3Dh[1] = -2 * h0 * h0 / 6.0 * alpha * alpha / h12 * h0 / h1 - rho * beta * nu * alpha / 4.0 / h1h0 * h0 / h1; f3Dh[2] = 0.0; final double[] f1Dp = new double[4]; // Derivative to sabr parameters final double[] f2Dp = new double[4]; final double[] f3Dp = new double[4]; final double[] f4Dp = new double[4]; f1Dp[0] = 0.0; f1Dp[1] = f1Dh[0] * h0Dbeta; f1Dp[2] = 0.0; f1Dp[3] = 0.0; f2Dp[0] = -f2 / alpha; f2Dp[1] = f2Dh[0] * h0Dbeta; f2Dp[2] = 0.0; f2Dp[3] = h1h0 * h2 / alpha; f3Dp[0] = h0 * h0 / 3.0 * alpha / h12 + rho * beta * nu / 4.0 / h1h0; f3Dp[1] = rho * nu * alpha / 4.0 / h1h0 + f3Dh[0] * h0Dbeta; f3Dp[2] = beta * nu * alpha / 4.0 / h1h0 - rho / 4.0 * nu * nu; f3Dp[3] = rho * beta * alpha / 4.0 / h1h0 + (2 - 3 * rho * rho) / 12.0 * nu; f4Dp[0] = 1.0; f4Dp[1] = 0.0; f4Dp[2] = 0.0; f4Dp[3] = 0.0; final double sigmaDh1 = sigmaDf1 * f1Dh[1] + sigmaDf2 * f2Dh[1] + sigmaDf3 * f3Dh[1]; final double sigmaDh2 = sigmaDf1 * f1Dh[2] + sigmaDf2 * f2Dh[2] + sigmaDf3 * f3Dh[2]; final double[][] f1D2hh = new double[2][2]; // No h0 final double[][] f2D2hh = new double[2][2]; final double[][] f3D2hh = new double[2][2]; f1D2hh[0][0] = h0 * (h0 - 1) * f1 / (h1 * h1); f1D2hh[0][1] = h0 * h1h0 / h1 * h0 * h0 / 6.0 * (2.0 * h2 + 4.0 * h0 * h0 / 20.0 * h23); f1D2hh[1][1] = h1h0 * (h0 * h0 / 6.0 * (2.0 + 12.0 * h0 * h0 / 20.0 * h2)); f2D2hh[0][0] = h0 * (h0 - 1) * f2 / (h1 * h1); f2D2hh[0][1] = nu / alpha * h0 * h1h0 / h1; f2D2hh[1][1] = 0.0; f3D2hh[0][0] = 2 * h0 * (2 * h0 + 1) * h0 * h0 / 6.0 * alpha * alpha / (h12 * h1 * h1) + h0 * (h0 + 1) * rho * beta * nu * alpha / 4.0 / (h1h0 * h1 * h1); f3D2hh[0][1] = 0.0; f3D2hh[1][1] = 0.0; final double[][] sigmaD2hh = new double[2][2]; // No h0 for (int loopx = 0; loopx < 2; loopx++) { for (int loopy = loopx; loopy < 2; loopy++) { sigmaD2hh[loopx][loopy] = (sigmaD2ff[0][0] * f1Dh[loopy + 1] + sigmaD2ff[0][1] * f2Dh[loopy + 1] + sigmaD2ff[0][2] * f3Dh[loopy + 1]) * f1Dh[loopx + 1] + sigmaDf1 * f1D2hh[loopx][loopy] + (sigmaD2ff[0][1] * f1Dh[loopy + 1] + sigmaD2ff[1][1] * f2Dh[loopy + 1] + sigmaD2ff[1][2] * f3Dh[loopy + 1]) * f2Dh[loopx + 1] + sigmaDf2 * f2D2hh[loopx][loopy] + (sigmaD2ff[0][2] * f1Dh[loopy + 1] + sigmaD2ff[1][2] * f2Dh[loopy + 1] + sigmaD2ff[2][2] * f3Dh[loopy + 1]) * f3Dh[loopx + 1] + sigmaDf3 * f3D2hh[loopx][loopy]; } } // Third level final double h1Df = k; final double h1Dk = forward; final double h1D2ff = 0.0; final double h1D2kf = 1.0; final double h1D2kk = 0.0; final double h2Df = 1.0 / forward; final double h2Dk = -1.0 / k; final double h2D2ff = -1 / (forward * forward); final double h2D2fk = 0.0; final double h2D2kk = 1.0 / (k * k); volatilityD[0] = sigmaDh1 * h1Df + sigmaDh2 * h2Df; volatilityD[1] = sigmaDh1 * h1Dk + sigmaDh2 * h2Dk; volatilityD[2] = sigmaDf1 * f1Dp[0] + sigmaDf2 * f2Dp[0] + sigmaDf3 * f3Dp[0] + sigmaDf4 * f4Dp[0]; volatilityD[3] = sigmaDf1 * f1Dp[1] + sigmaDf2 * f2Dp[1] + sigmaDf3 * f3Dp[1] + sigmaDf4 * f4Dp[1]; if (CompareUtils.closeEquals(f2, 0.0, SMALL_Z)) { volatilityD[4] = -0.5 * f2 + sigmaDf3 * f3Dp[2]; } else { double xDr; if (CompareUtils.closeEquals(rho, 1.0, RHO_EPS)) { xDr = f2 > 1.0 ? 1.0 / (1.0 - rho) + (0.5 - f2) / (f2 - 1.0) / (f2 - 1.0) : 0.5 * Math.pow(f2 / (1.0 - f2), 2.0) + 0.25 * (f2 - 4.0) * Math.pow(f2 / (f2 - 1.0), 3) / (f2 - 1.0) * (1.0 - rho); if (Doubles.isFinite(xDr)) { volatilityD[4] = sigmaDf1 * f1Dp[2] + sigmaDx * xDr + sigmaDf3 * f3Dp[2] + sigmaDf4 * f4Dp[2]; } else { volatilityD[4] = Double.NEGATIVE_INFINITY; } } else { xDr = (-f2 / sqrtf2 - 1 + (sqrtf2 + f2 - rho) / (1 - rho)) / (sqrtf2 + f2 - rho); volatilityD[4] = sigmaDf1 * f1Dp[2] + sigmaDx * xDr + sigmaDf3 * f3Dp[2] + sigmaDf4 * f4Dp[2]; } } volatilityD[5] = sigmaDf1 * f1Dp[3] + sigmaDf2 * f2Dp[3] + sigmaDf3 * f3Dp[3] + sigmaDf4 * f4Dp[3]; volatilityD2[0][0] = (sigmaD2hh[0][0] * h1Df + sigmaD2hh[0][1] * h2Df) * h1Df + sigmaDh1 * h1D2ff + (sigmaD2hh[0][1] * h1Df + sigmaD2hh[1][1] * h2Df) * h2Df + sigmaDh2 * h2D2ff; volatilityD2[0][1] = (sigmaD2hh[0][0] * h1Dk + sigmaD2hh[0][1] * h2Dk) * h1Df + sigmaDh1 * h1D2kf + (sigmaD2hh[0][1] * h1Dk + sigmaD2hh[1][1] * h2Dk) * h2Df + sigmaDh2 * h2D2fk; volatilityD2[1][0] = volatilityD2[0][1]; volatilityD2[1][1] = (sigmaD2hh[0][0] * h1Dk + sigmaD2hh[0][1] * h2Dk) * h1Dk + sigmaDh1 * h1D2kk + (sigmaD2hh[0][1] * h1Dk + sigmaD2hh[1][1] * h2Dk) * h2Dk + sigmaDh2 * h2D2kk; return sigma; } private double getZOverChi(final double rho, final double z) { // Implementation comment: To avoid numerical instability (0/0) around ATM the first order approximation is used. if (CompareUtils.closeEquals(z, 0.0, SMALL_Z)) { return 1.0 - rho * z / 2.0; } final double rhoStar = 1 - rho; if (CompareUtils.closeEquals(rhoStar, 0.0, RHO_EPS)) { if (z > 1.0) { if (rhoStar == 0.0) { return 0.0; } return z / (Math.log(2 * (z - 1)) - Math.log(rhoStar)); } else if (z < 1.0) { return z / (-Math.log(1 - z) - 0.5 * FunctionUtils.square(z / (z - 1.0)) * rhoStar); } else { return 0.0; } } final double rhoHat = 1 + rho; if (CompareUtils.closeEquals(rhoHat, 0.0, RHO_EPS_NEGATIVE)) { if (z > -1) { return z / Math.log(1 + z); } else if (z < -1) { if (rhoHat == 0) { return 0.0; } final double chi = Math.log(rhoHat) - Math.log(-(1 + z) / rhoStar); return z / chi; } else { return 0.0; } } double arg; if (z < LARGE_NEG_Z) { arg = (rho * rho - 1) / 2 / z; //get rounding errors due to fine balanced cancellation for very large negative z } else if (z > LARGE_POS_Z) { arg = 2 * (z - rho); } else { arg = (Math.sqrt(1 - 2 * rho * z + z * z) + z - rho); //Mathematically this cannot be less than zero, but you know what computers are like. if (arg <= 0.0) { return 0.0; } } final double chi = Math.log(arg) - Math.log(rhoStar); return z / chi; } /** * computes the z/chi(z) term, and its derivatives wrt rho and z for all possible values of rho and z (i.e. the edge cases * rho = +- 1 are handled). * @param rho * @param z * @return values, derivative wrt rho, and derivative wrt z * */ private double[] zOverChiWithDev(final double rho, final double z) { final double[] res = new double[3]; if (CompareUtils.closeEquals(z, 0.0, SMALL_Z)) { res[0] = 1 - rho * z / 2; res[1] = -z / 2; res[2] = -rho / 2; return res; } final double rhoStar = 1 - rho; if (CompareUtils.closeEquals(rhoStar, 0.0, RHO_EPS)) { if (z > 1) { if (rhoStar == 0) { res[0] = 0.0; res[1] = Double.NEGATIVE_INFINITY; res[2] = 0; } else { final double temp = Math.log(2 * (z - 1)) - Math.log(rhoStar); res[0] = z / temp; res[1] = -z / temp / temp * (1.0 / rhoStar + (0.5 - z) / FunctionUtils.square(z - 1.0)); res[2] = 1 / temp - z / temp / temp / Math.sqrt(1.0 - 2.0 * rho * z + z * z); } } else if (z < 1) { final double temp = -Math.log(1 - z) - 0.5 * FunctionUtils.square(z / (z - 1.0)) * rhoStar; res[0] = z / temp; res[1] = -z / temp / temp * (0.5 * FunctionUtils.square(z / (z - 1.0)) + (0.25 * z - 1.0) * FunctionUtils.cube(z / (z - 1.0)) / (z - 1.0) * rhoStar); res[2] = 1 / temp - z / temp / temp / Math.sqrt(1.0 - 2.0 * rho * z + z * z); } else { throw new MathException("can't handle z=1, rho=1"); } return res; } final double rhoHat = 1 + rho; if (CompareUtils.closeEquals(rhoHat, 0.0, RHO_EPS_NEGATIVE)) { if (z > -1) { final double temp = Math.log(1 + z); final double temp2 = temp * temp; res[0] = z / temp; res[1] = ((2 * z + 1) / 2 / FunctionUtils.square(1 + z) - 1 / rhoStar) * z / temp2; res[2] = 1 / temp - z / (1 + z) / temp2; } else if (z < -1) { if (rhoHat == 0) { res[0] = 0; final double chi = Math.log(RHO_EPS_NEGATIVE) - Math.log(-(1 + z) / rhoStar); final double chiRho = 1 / RHO_EPS_NEGATIVE + 1 / rhoStar - FunctionUtils.square(z / (1 + z)); res[1] = -chiRho * z / chi / chi; //should be +infinity res[2] = 0.0; } else { final double chi = Math.log(rhoHat) - Math.log(-(1 + z) / rhoStar); res[0] = z / chi; final double chiRho = 1 / rhoHat + 1 / rhoStar - FunctionUtils.square(z / (1 + z)); res[1] = -chiRho * z / chi / chi; res[2] = 1 / chi + z / chi / chi / (1 + z); } } else { throw new MathException("can't handle z=-1, rho=-1"); } return res; } //now the non-edge case double root = 0; double arg; double argRho; double argZ; if (z < LARGE_NEG_Z) { root = -z + rho - 1 / 2 / z; arg = (rho * rho - 1) / 2 / z; //get rounding errors due to fine balanced cancellation for very large negative z argRho = rho / z; argZ = -arg / z; } else if (z > LARGE_POS_Z) { root = z - rho + 1 / 2 / z; arg = root + z - rho; argRho = -2; argZ = 2 - 1 / 2 / z / z; } else { root = Math.sqrt(1 - 2 * rho * z + z * z); arg = root + z - rho; argRho = -(z / root + 1); argZ = (z - rho) / root + 1; } if (arg <= 0.0) { //Mathematically this cannot be less than zero, but you know what computers are like. res[0] = 0.0; res[1] = 0.0; res[2] = 0.0; } else { final double chi = Math.log(arg / (1 - rho)); res[0] = z / chi; final double chiRho = argRho / arg + 1 / rhoStar; final double zChi2 = z / chi / chi; res[1] = -chiRho * zChi2; final double chiZ = argZ / arg; res[2] = 1 / chi - zChi2 * chiZ; } return res; } @Override public int hashCode() { return toString().hashCode(); } @Override public boolean equals(final Object obj) { if (obj == null) { return false; } if (this == obj) { return true; } if (getClass() != obj.getClass()) { return false; } return true; } @Override public String toString() { return "SABR (Hagan)"; } }