/* Generated By:JJTree: Do not edit this line. D:/jython/CVS.parser/org/python/parser\JJTPythonGrammarState.java */ // Modified by hand. The two closeNodeScope method have been rewritten // completely and is used when building the AST tree bottom-up. package org.python.parser; class JJTPythonGrammarState { private java.util.Stack nodes; private IntStack marks; private IntStack lines; private IntStack columns; private int sp; // number of nodes on stack private int mk; // current mark private boolean node_created; private TreeBuilder builder; JJTPythonGrammarState() { nodes = new java.util.Stack(); marks = new IntStack(); lines = new IntStack(); columns = new IntStack(); sp = 0; mk = 0; builder = new TreeBuilder(this); } /* Determines whether the current node was actually closed and pushed. This should only be called in the final user action of a node scope. */ boolean nodeCreated() { return node_created; } /* Call this to reinitialize the node stack. It is called automatically by the parser's ReInit() method. */ void reset() { nodes.removeAllElements(); marks.removeAllElements(); sp = 0; mk = 0; } /* Returns the root node of the AST. It only makes sense to call this after a successful parse. */ Node rootNode() { return (Node) nodes.elementAt(0); } /* Pushes a node on to the stack. */ void pushNode(Node n) { nodes.push(n); ++sp; } /* Returns the node on the top of the stack, and remove it from the stack. */ Node popNode() { if (--sp < mk) { mk = marks.pop(); } return (Node) nodes.pop(); } /* Returns the node currently on the top of the stack. */ Node peekNode() { return (Node) nodes.peek(); } /* Returns the number of children on the stack in the current node scope. */ int nodeArity() { return sp - mk; } void pushNodePos(int line, int col) { lines.push(line); columns.push(col); } void setNodePos() { SimpleNode n = (SimpleNode) peekNode(); n.beginLine = lines.pop(); n.beginColumn = columns.pop(); } void clearNodeScope(Node n) { while (sp > mk) { popNode(); } mk = marks.pop(); } void openNodeScope(Node n) { marks.push(mk); mk = sp; } /* A definite node is constructed from a specified number of children. That number of nodes are popped from the stack and made the children of the definite node. Then the definite node is pushed on to the stack. */ void closeNodeScope(Node n, int num) throws ParseException { SimpleNode sn = (SimpleNode) n; mk = marks.pop(); SimpleNode newNode = null; try { newNode = builder.closeNode(sn, num); } catch (ParseException exc) { throw exc; } catch (Exception exc) { exc.printStackTrace(); throw new ParseException("Internal error:" + exc); } if (newNode == null) { throw new ParseException("Internal AST builder error"); } pushNode(newNode); node_created = true; } /* A conditional node is constructed if its condition is true. All the nodes that have been pushed since the node was opened are made children of the the conditional node, which is then pushed on to the stack. If the condition is false the node is not constructed and they are left on the stack. */ void closeNodeScope(Node n, boolean condition) throws ParseException { SimpleNode sn = (SimpleNode) n; if (condition) { SimpleNode newNode = null; try { newNode = builder.closeNode(sn, nodeArity()); } catch (ParseException exc) { throw exc; } catch (Exception exc) { exc.printStackTrace(); throw new ParseException("Internal error:" + exc); } if (newNode == null) { throw new ParseException("Internal AST builder error"); } mk = marks.pop(); pushNode(newNode); node_created = true; } else { mk = marks.pop(); node_created = false; } } public void dumpTop(String reason) { int a = nodeArity(); System.out.println("dumpTop:" + reason); System.out.println("arity:" + a); for (int i = 0; i < a; i++) { Node n = (Node) nodes.elementAt(nodes.size() - i - 1); System.out.println(" " + n); } } public Node openNode(int id) { return builder.openNode(id); } public void dump(String reason) { int a = nodeArity(); System.out.println("dump:" + reason); System.out.println(" mk:" + mk + " sp:" + sp); for (int i = 0; i < nodes.size(); i++) { Node n = (Node) nodes.elementAt(i); System.out.println(" " + n); } for (int i = 0; i < marks.size(); i++) { System.out.println(" " + marks.elementAt(i)); } } } class IntStack { int[] stack; int sp = 0; public IntStack() { stack = new int[50]; } public void removeAllElements() { sp = 0; } public int size() { return sp; } public int elementAt(int idx) { return stack[idx]; } public void push(int val) { if (sp >= stack.length) { int[] newstack = new int[sp * 2]; System.arraycopy(stack, 0, newstack, 0, sp); stack = newstack; } stack[sp++] = val; } public int pop() { return stack[--sp]; } }