/* Generic definitions */ /* Assertions (useful to generate conditional code) */ /* Current type and class (and size, if applicable) */ /* Value methods */ /* Interfaces (keys) */ /* Interfaces (values) */ /* Abstract implementations (keys) */ /* Abstract implementations (values) */ /* Static containers (keys) */ /* Static containers (values) */ /* Implementations */ /* Synchronized wrappers */ /* Unmodifiable wrappers */ /* Other wrappers */ /* Methods (keys) */ /* Methods (values) */ /* Methods (keys/values) */ /* Methods that have special names depending on keys (but the special names depend on values) */ /* Equality */ /* Object/Reference-only definitions (keys) */ /* Primitive-type-only definitions (keys) */ /* Object/Reference-only definitions (values) */ /* * Copyright (C) 2002-2011 Sebastiano Vigna * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * * * For the sorting and binary search code: * * Copyright (C) 1999 CERN - European Organization for Nuclear Research. * * Permission to use, copy, modify, distribute and sell this software and * its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and that * both that copyright notice and this permission notice appear in * supporting documentation. CERN makes no representations about the * suitability of this software for any purpose. It is provided "as is" * without expressed or implied warranty. */ package it.unimi.dsi.fastutil.booleans; import it.unimi.dsi.fastutil.Arrays; import it.unimi.dsi.fastutil.Hash; import java.util.Random; /** A class providing static methods and objects that do useful things with type-specific arrays. * * <p>In particular, the <code>ensureCapacity()</code>, <code>grow()</code>, * <code>trim()</code> and <code>setLength()</code> methods allow to handle * arrays much like array lists. This can be very useful when efficiency (or * syntactic simplicity) reasons make array lists unsuitable. * * <P>Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO} * contain several methods make it possible to load and save arrays of primitive types as sequences * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text. * * @see java.util.Arrays */ public class BooleanArrays { /** The inverse of the golden ratio times 2<sup>16</sup>. */ public static final long ONEOVERPHI = 106039; private BooleanArrays() {} /** A static, final, empty array. */ public final static boolean[] EMPTY_ARRAY = {}; /** Ensures that an array can contain the given number of entries. * * <P>If you cannot foresee whether this array will need again to be * enlarged, you should probably use <code>grow()</code> instead. * * @param array an array. * @param length the new minimum length for this array. * @return <code>array</code>, if it contains <code>length</code> entries or more; otherwise, * an array with <code>length</code> entries whose first <code>array.length</code> * entries are the same as those of <code>array</code>. */ public static boolean[] ensureCapacity( final boolean[] array, final int length ) { if ( length > array.length ) { final boolean t[] = new boolean[ length ]; System.arraycopy( array, 0, t, 0, array.length ); return t; } return array; } /** Ensures that an array can contain the given number of entries, preserving just a part of the array. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return <code>array</code>, if it can contain <code>length</code> entries or more; otherwise, * an array with <code>length</code> entries whose first <code>preserve</code> * entries are the same as those of <code>array</code>. */ public static boolean[] ensureCapacity( final boolean[] array, final int length, final int preserve ) { if ( length > array.length ) { final boolean t[] = new boolean[ length ]; System.arraycopy( array, 0, t, 0, preserve ); return t; } return array; } /** Grows the given array to the maximum between the given length and * the current length divided by the golden ratio, provided that the given * length is larger than the current length. * * <P> Dividing by the golden ratio (φ) approximately increases the array * length by 1.618. If you want complete control on the array growth, you * should probably use <code>ensureCapacity()</code> instead. * * @param array an array. * @param length the new minimum length for this array. * @return <code>array</code>, if it can contain <code>length</code> * entries; otherwise, an array with * max(<code>length</code>,<code>array.length</code>/φ) entries whose first * <code>array.length</code> entries are the same as those of <code>array</code>. * */ public static boolean[] grow( final boolean[] array, final int length ) { if ( length > array.length ) { final int newLength = (int)Math.min( Math.max( ( ONEOVERPHI * array.length ) >>> 16, length ), Integer.MAX_VALUE ); final boolean t[] = new boolean[ newLength ]; System.arraycopy( array, 0, t, 0, array.length ); return t; } return array; } /** Grows the given array to the maximum between the given length and * the current length divided by the golden ratio, provided that the given * length is larger than the current length, preserving just a part of the array. * * <P> Dividing by the golden ratio (φ) approximately increases the array * length by 1.618. If you want complete control on the array growth, you * should probably use <code>ensureCapacity()</code> instead. * * @param array an array. * @param length the new minimum length for this array. * @param preserve the number of elements of the array that must be preserved in case a new allocation is necessary. * @return <code>array</code>, if it can contain <code>length</code> * entries; otherwise, an array with * max(<code>length</code>,<code>array.length</code>/φ) entries whose first * <code>preserve</code> entries are the same as those of <code>array</code>. * */ public static boolean[] grow( final boolean[] array, final int length, final int preserve ) { if ( length > array.length ) { final int newLength = (int)Math.min( Math.max( ( ONEOVERPHI * array.length ) >>> 16, length ), Integer.MAX_VALUE ); final boolean t[] = new boolean[ newLength ]; System.arraycopy( array, 0, t, 0, preserve ); return t; } return array; } /** Trims the given array to the given length. * * @param array an array. * @param length the new maximum length for the array. * @return <code>array</code>, if it contains <code>length</code> * entries or less; otherwise, an array with * <code>length</code> entries whose entries are the same as * the first <code>length</code> entries of <code>array</code>. * */ public static boolean[] trim( final boolean[] array, final int length ) { if ( length >= array.length ) return array; final boolean t[] = length == 0 ? EMPTY_ARRAY : new boolean[ length ]; System.arraycopy( array, 0, t, 0, length ); return t; } /** Sets the length of the given array. * * @param array an array. * @param length the new length for the array. * @return <code>array</code>, if it contains exactly <code>length</code> * entries; otherwise, if it contains <em>more</em> than * <code>length</code> entries, an array with <code>length</code> entries * whose entries are the same as the first <code>length</code> entries of * <code>array</code>; otherwise, an array with <code>length</code> entries * whose first <code>array.length</code> entries are the same as those of * <code>array</code>. * */ public static boolean[] setLength( final boolean[] array, final int length ) { if ( length == array.length ) return array; if ( length < array.length ) return trim( array, length ); return ensureCapacity( array, length ); } /** Returns a copy of a portion of an array. * * @param array an array. * @param offset the first element to copy. * @param length the number of elements to copy. * @return a new array containing <code>length</code> elements of <code>array</code> starting at <code>offset</code>. */ public static boolean[] copy( final boolean[] array, final int offset, final int length ) { ensureOffsetLength( array, offset, length ); final boolean[] a = length == 0 ? EMPTY_ARRAY : new boolean[ length ]; System.arraycopy( array, offset, a, 0, length ); return a; } /** Returns a copy of an array. * * @param array an array. * @return a copy of <code>array</code>. */ public static boolean[] copy( final boolean[] array ) { return array.clone(); } /** Fills the given array with the given value. * * <P>This method uses a backward loop. It is significantly faster than the corresponding * method in {@link java.util.Arrays}. * * @param array an array. * @param value the new value for all elements of the array. */ public static void fill( final boolean[] array, final boolean value ) { int i = array.length; while( i-- != 0 ) array[ i ] = value; } /** Fills a portion of the given array with the given value. * * <P>If possible (i.e., <code>from</code> is 0) this method uses a * backward loop. In this case, it is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param array an array. * @param from the starting index of the portion to fill. * @param to the end index of the portion to fill. * @param value the new value for all elements of the specified portion of the array. */ public static void fill( final boolean[] array, final int from, int to, final boolean value ) { ensureFromTo( array, from, to ); if ( from == 0 ) while( to-- != 0 ) array[ to ] = value; else for( int i = from; i < to; i++ ) array[ i ] = value; } /** Returns true if the two arrays are elementwise equal. * * <P>This method uses a backward loop. It is significantly faster than the corresponding * method in {@link java.util.Arrays}. * * @param a1 an array. * @param a2 another array. * @return true if the two arrays are of the same length, and their elements are equal. */ public static boolean equals( final boolean[] a1, final boolean a2[] ) { int i = a1.length; if ( i != a2.length ) return false; while( i-- != 0 ) if (! ( (a1[ i ]) == (a2[ i ]) ) ) return false; return true; } /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array. * * <P>This method may be used whenever an array range check is needed. * * @param a an array. * @param from a start index (inclusive). * @param to an end index (inclusive). * @throws IllegalArgumentException if <code>from</code> is greater than <code>to</code>. * @throws ArrayIndexOutOfBoundsException if <code>from</code> or <code>to</code> are greater than the array length or negative. */ public static void ensureFromTo( final boolean[] a, final int from, final int to ) { Arrays.ensureFromTo( a.length, from, to ); } /** Ensures that a range given by an offset and a length fits an array. * * <P>This method may be used whenever an array range check is needed. * * @param a an array. * @param offset a start index. * @param length a length (the number of elements in the range). * @throws IllegalArgumentException if <code>length</code> is negative. * @throws ArrayIndexOutOfBoundsException if <code>offset</code> is negative or <code>offset</code>+<code>length</code> is greater than the array length. */ public static void ensureOffsetLength( final boolean[] a, final int offset, final int length ) { Arrays.ensureOffsetLength( a.length, offset, length ); } private static final int SMALL = 7; private static final int MEDIUM = 50; private static void swap( final boolean x[], final int a, final int b ) { final boolean t = x[ a ]; x[ a ] = x[ b ]; x[ b ] = t; } private static void vecSwap( final boolean[] x, int a, int b, final int n ) { for( int i = 0; i < n; i++, a++, b++ ) swap( x, a, b ); } private static int med3( final boolean x[], final int a, final int b, final int c, BooleanComparator comp ) { int ab = comp.compare( x[ a ], x[ b ] ); int ac = comp.compare( x[ a ], x[ c ] ); int bc = comp.compare( x[ b ], x[ c ] ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } private static void selectionSort( final boolean[] a, final int from, final int to, final BooleanComparator comp ) { for( int i = from; i < to - 1; i++ ) { int m = i; for( int j = i + 1; j < to; j++ ) if ( comp.compare( a[ j ], a[ m ] ) < 0 ) m = j; if ( m != i ) { final boolean u = a[ i ]; a[ i ] = a[ m ]; a[ m ] = u; } } } private static void insertionSort( final boolean[] a, final int from, final int to, final BooleanComparator comp ) { for ( int i = from; ++i < to; ) { boolean t = a[ i ]; int j = i; for ( boolean u = a[ j - 1 ]; comp.compare( t, u ) < 0; u = a[ --j - 1 ] ) { a[ j ] = u; if ( from == j - 1 ) { --j; break; } } a[ j ] = t; } } @SuppressWarnings("unchecked") private static void selectionSort( final boolean[] a, final int from, final int to ) { for( int i = from; i < to - 1; i++ ) { int m = i; for( int j = i + 1; j < to; j++ ) if ( ( !(a[ j ]) && (a[ m ]) ) ) m = j; if ( m != i ) { final boolean u = a[ i ]; a[ i ] = a[ m ]; a[ m ] = u; } } } @SuppressWarnings("unchecked") private static void insertionSort( final boolean[] a, final int from, final int to ) { for ( int i = from; ++i < to; ) { boolean t = a[ i ]; int j = i; for ( boolean u = a[ j - 1 ]; ( !(t) && (u) ); u = a[ --j - 1 ] ) { a[ j ] = u; if ( from == j - 1 ) { --j; break; } } a[ j ] = t; } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using quicksort. * * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages * 1249−1265, 1993. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. * */ public static void quickSort( final boolean[] x, final int from, final int to, final BooleanComparator comp ) { final int len = to - from; // Selection sort on smallest arrays if ( len < SMALL ) { selectionSort( x, from, to, comp ); return; } // Choose a partition element, v int m = from + len / 2; // Small arrays, middle element if ( len > SMALL ) { int l = from; int n = to - 1; if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3( x, l, l + s, l + 2 * s, comp ); m = med3( x, m - s, m, m + s, comp ); n = med3( x, n - 2 * s, n - s, n, comp ); } m = med3( x, l, m, n, comp ); // Mid-size, med of 3 } final boolean v = x[ m ]; // Establish Invariant: v* (<v)* (>v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while ( b <= c && ( comparison = comp.compare( x[ b ], v ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while (c >= b && ( comparison = comp.compare( x[ c ], v ) ) >=0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle int s, n = to; s = Math.min( a - from, b - a ); vecSwap( x, from, b - s, s ); s = Math.min( d - c, n - d - 1 ); vecSwap( x, b, n - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s, comp ); if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n, comp ); } /** Sorts an array according to the order induced by the specified * comparator using quicksort. * * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages * 1249−1265, 1993. * * @param x the array to be sorted. * @param comp the comparator to determine the sorting order. * */ public static void quickSort( final boolean[] x, final BooleanComparator comp ) { quickSort( x, 0, x.length, comp ); } @SuppressWarnings("unchecked") private static int med3( final boolean x[], final int a, final int b, final int c ) { int ab = ( !(x[ a ]) && (x[ b ]) ? -1 : ( (x[ a ]) == (x[ b ]) ? 0 : 1 ) ); int ac = ( !(x[ a ]) && (x[ c ]) ? -1 : ( (x[ a ]) == (x[ c ]) ? 0 : 1 ) ); int bc = ( !(x[ b ]) && (x[ c ]) ? -1 : ( (x[ b ]) == (x[ c ]) ? 0 : 1 ) ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } /** Sorts the specified range of elements according to the natural ascending order using quicksort. * * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages * 1249−1265, 1993. * * @param x the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * */ @SuppressWarnings("unchecked") public static void quickSort( final boolean[] x, final int from, final int to ) { final int len = to - from; // Selection sort on smallest arrays if ( len < SMALL ) { selectionSort( x, from, to ); return; } // Choose a partition element, v int m = from + len / 2; // Small arrays, middle element if ( len > SMALL ) { int l = from; int n = to - 1; if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3( x, l, l + s, l + 2 * s ); m = med3( x, m - s, m, m + s ); n = med3( x, n - 2 * s, n - s, n ); } m = med3( x, l, m, n ); // Mid-size, med of 3 } final boolean v = x[ m ]; // Establish Invariant: v* (<v)* (>v)* v* int a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while ( b <= c && ( comparison = ( !(x[ b ]) && (v) ? -1 : ( (x[ b ]) == (v) ? 0 : 1 ) ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while (c >= b && ( comparison = ( !(x[ c ]) && (v) ? -1 : ( (x[ c ]) == (v) ? 0 : 1 ) ) ) >=0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle int s, n = to; s = Math.min( a - from, b - a ); vecSwap( x, from, b - s, s ); s = Math.min( d - c, n - d - 1 ); vecSwap( x, b, n - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s ); if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n ); } /** Sorts an array according to the natural ascending order using quicksort. * * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, <i>Software: Practice and Experience</i>, 23(11), pages * 1249−1265, 1993. * * @param x the array to be sorted. * */ public static void quickSort( final boolean[] x ) { quickSort( x, 0, x.length ); } /** Sorts the specified range of elements according to the natural ascending order using mergesort, using a given support array. * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result * of the sort. Moreover, no support arrays will be allocated. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param supp a support array, at least as large as <code>a</code>. */ @SuppressWarnings("unchecked") public static void mergeSort( final boolean a[], final int from, final int to, final boolean supp[] ) { int len = to - from; // Insertion sort on smallest arrays if ( len < SMALL ) { insertionSort( a, from, to ); return; } // Recursively sort halves of a into supp final int mid = ( from + to ) >>> 1; mergeSort( supp, from, mid, a ); mergeSort( supp, mid, to, a ); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if ( ( !(supp[ mid - 1 ]) || (supp[ mid ]) ) ) { System.arraycopy( supp, from, a, from, len ); return; } // Merge sorted halves (now in supp) into a for( int i = from, p = from, q = mid; i < to; i++ ) { if ( q >= to || p < mid && ( !(supp[ p ]) || (supp[ q ]) ) ) a[ i ] = supp[ p++ ]; else a[ i ] = supp[ q++ ]; } } /** Sorts the specified range of elements according to the natural ascending order using mergesort. * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result * of the sort. An array as large as <code>a</code> will be allocated by this method. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void mergeSort( final boolean a[], final int from, final int to ) { mergeSort( a, from, to, a.clone() ); } /** Sorts an array according to the natural ascending order using mergesort. * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result * of the sort. An array as large as <code>a</code> will be allocated by this method. * @param a the array to be sorted. */ public static void mergeSort( final boolean a[] ) { mergeSort( a, 0, a.length ); } /** Sorts the specified range of elements according to the order induced by the specified * comparator using mergesort, using a given support array. * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result * of the sort. Moreover, no support arrays will be allocated. * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. * @param supp a support array, at least as large as <code>a</code>. */ @SuppressWarnings("unchecked") public static void mergeSort( final boolean a[], final int from, final int to, BooleanComparator comp, final boolean supp[] ) { int len = to - from; // Insertion sort on smallest arrays if ( len < SMALL ) { insertionSort( a, from, to, comp ); return; } // Recursively sort halves of a into supp final int mid = ( from + to ) >>> 1; mergeSort( supp, from, mid, comp, a ); mergeSort( supp, mid, to, comp, a ); // If list is already sorted, just copy from supp to a. This is an // optimization that results in faster sorts for nearly ordered lists. if ( comp.compare( supp[ mid - 1 ], supp[ mid ] ) <= 0 ) { System.arraycopy( supp, from, a, from, len ); return; } // Merge sorted halves (now in supp) into a for( int i = from, p = from, q = mid; i < to; i++ ) { if ( q >= to || p < mid && comp.compare( supp[ p ], supp[ q ] ) <= 0 ) a[ i ] = supp[ p++ ]; else a[ i ] = supp[ q++ ]; } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using mergesort. * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result * of the sort. An array as large as <code>a</code> will be allocated by this method. * * @param a the array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static void mergeSort( final boolean a[], final int from, final int to, BooleanComparator comp ) { mergeSort( a, from, to, comp, a.clone() ); } /** Sorts an array according to the order induced by the specified * comparator using mergesort. * * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result * of the sort. An array as large as <code>a</code> will be allocated by this method. * @param a the array to be sorted. * @param comp the comparator to determine the sorting order. */ public static void mergeSort( final boolean a[], BooleanComparator comp ) { mergeSort( a, 0, a.length, comp ); } /** Shuffles the specified array fragment using the specified pseudorandom number generator. * * @param a the array to be shuffled. * @param from the index of the first element (inclusive) to be shuffled. * @param to the index of the last element (exclusive) to be shuffled. * @param random a pseudorandom number generator (please use a <a href="http://dsiutils.dsi.unimi.it/docs/it/unimi/dsi/util/XorShiftStarRandom.html">XorShift*</a> generator). * @return <code>a</code>. */ public static boolean[] shuffle( final boolean[] a, final int from, final int to, final Random random ) { for( int i = to - from; i-- != 0; ) { final int p = random.nextInt( i + 1 ); final boolean t = a[ from + i ]; a[ from + i ] = a[ from + p ]; a[ from + p ] = t; } return a; } /** Shuffles the specified array using the specified pseudorandom number generator. * * @param a the array to be shuffled. * @param random a pseudorandom number generator (please use a <a href="http://dsiutils.dsi.unimi.it/docs/it/unimi/dsi/util/XorShiftStarRandom.html">XorShift*</a> generator). * @return <code>a</code>. */ public static boolean[] shuffle( final boolean[] a, final Random random ) { for( int i = a.length; i-- != 0; ) { final int p = random.nextInt( i + 1 ); final boolean t = a[ i ]; a[ i ] = a[ p ]; a[ p ] = t; } return a; } /** A type-specific content-based hash strategy for arrays. */ private static final class ArrayHashStrategy implements Hash.Strategy<boolean[]>, java.io.Serializable { public static final long serialVersionUID = -7046029254386353129L; public int hashCode( final boolean[] o ) { return java.util.Arrays.hashCode( o ); } public boolean equals( final boolean[] a, final boolean[] b ) { return BooleanArrays.equals( a, b ); } } /** A type-specific content-based hash strategy for arrays. * * <P>This hash strategy may be used in custom hash collections whenever keys are * arrays, and they must be considered equal by content. This strategy * will handle <code>null</code> correctly, and it is serializable. */ @SuppressWarnings({"unchecked", "rawtypes"}) public final static Hash.Strategy HASH_STRATEGY = new ArrayHashStrategy(); }