package org.spongycastle.crypto.tls; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.math.BigInteger; import org.spongycastle.asn1.x509.KeyUsage; import org.spongycastle.asn1.x509.SubjectPublicKeyInfo; import org.spongycastle.asn1.x509.X509CertificateStructure; import org.spongycastle.crypto.AsymmetricCipherKeyPair; import org.spongycastle.crypto.params.AsymmetricKeyParameter; import org.spongycastle.crypto.params.DHParameters; import org.spongycastle.crypto.params.DHPrivateKeyParameters; import org.spongycastle.crypto.params.DHPublicKeyParameters; import org.spongycastle.crypto.util.PublicKeyFactory; /** * TLS 1.0 DH key exchange. */ class TlsDHKeyExchange implements TlsKeyExchange { protected static final BigInteger ONE = BigInteger.valueOf(1); protected static final BigInteger TWO = BigInteger.valueOf(2); protected TlsClientContext context; protected int keyExchange; protected TlsSigner tlsSigner; protected AsymmetricKeyParameter serverPublicKey = null; protected DHPublicKeyParameters dhAgreeServerPublicKey = null; protected TlsAgreementCredentials agreementCredentials; protected DHPrivateKeyParameters dhAgreeClientPrivateKey = null; TlsDHKeyExchange(TlsClientContext context, int keyExchange) { switch (keyExchange) { case KeyExchangeAlgorithm.DH_RSA: case KeyExchangeAlgorithm.DH_DSS: this.tlsSigner = null; break; case KeyExchangeAlgorithm.DHE_RSA: this.tlsSigner = new TlsRSASigner(); break; case KeyExchangeAlgorithm.DHE_DSS: this.tlsSigner = new TlsDSSSigner(); break; default: throw new IllegalArgumentException("unsupported key exchange algorithm"); } this.context = context; this.keyExchange = keyExchange; } public void skipServerCertificate() throws IOException { throw new TlsFatalAlert(AlertDescription.unexpected_message); } public void processServerCertificate(Certificate serverCertificate) throws IOException { X509CertificateStructure x509Cert = serverCertificate.certs[0]; SubjectPublicKeyInfo keyInfo = x509Cert.getSubjectPublicKeyInfo(); try { this.serverPublicKey = PublicKeyFactory.createKey(keyInfo); } catch (RuntimeException e) { throw new TlsFatalAlert(AlertDescription.unsupported_certificate); } if (tlsSigner == null) { try { this.dhAgreeServerPublicKey = validateDHPublicKey((DHPublicKeyParameters)this.serverPublicKey); } catch (ClassCastException e) { throw new TlsFatalAlert(AlertDescription.certificate_unknown); } TlsUtils.validateKeyUsage(x509Cert, KeyUsage.keyAgreement); } else { if (!tlsSigner.isValidPublicKey(this.serverPublicKey)) { throw new TlsFatalAlert(AlertDescription.certificate_unknown); } TlsUtils.validateKeyUsage(x509Cert, KeyUsage.digitalSignature); } // TODO /* * Perform various checks per RFC2246 7.4.2: "Unless otherwise specified, the * signing algorithm for the certificate must be the same as the algorithm for the * certificate key." */ } public void skipServerKeyExchange() throws IOException { // OK } public void processServerKeyExchange(InputStream is) throws IOException { throw new TlsFatalAlert(AlertDescription.unexpected_message); } public void validateCertificateRequest(CertificateRequest certificateRequest) throws IOException { short[] types = certificateRequest.getCertificateTypes(); for (int i = 0; i < types.length; ++i) { switch (types[i]) { case ClientCertificateType.rsa_sign: case ClientCertificateType.dss_sign: case ClientCertificateType.rsa_fixed_dh: case ClientCertificateType.dss_fixed_dh: case ClientCertificateType.ecdsa_sign: break; default: throw new TlsFatalAlert(AlertDescription.illegal_parameter); } } } public void skipClientCredentials() throws IOException { this.agreementCredentials = null; } public void processClientCredentials(TlsCredentials clientCredentials) throws IOException { if (clientCredentials instanceof TlsAgreementCredentials) { // TODO Validate client cert has matching parameters (see 'areCompatibleParameters')? this.agreementCredentials = (TlsAgreementCredentials)clientCredentials; } else if (clientCredentials instanceof TlsSignerCredentials) { // OK } else { throw new TlsFatalAlert(AlertDescription.internal_error); } } public void generateClientKeyExchange(OutputStream os) throws IOException { /* * RFC 2246 7.4.7.2 If the client certificate already contains a suitable * Diffie-Hellman key, then Yc is implicit and does not need to be sent again. In * this case, the Client Key Exchange message will be sent, but will be empty. */ if (agreementCredentials == null) { generateEphemeralClientKeyExchange(dhAgreeServerPublicKey.getParameters(), os); } } public byte[] generatePremasterSecret() throws IOException { if (agreementCredentials != null) { return agreementCredentials.generateAgreement(dhAgreeServerPublicKey); } return calculateDHBasicAgreement(dhAgreeServerPublicKey, dhAgreeClientPrivateKey); } protected boolean areCompatibleParameters(DHParameters a, DHParameters b) { return a.getP().equals(b.getP()) && a.getG().equals(b.getG()); } protected byte[] calculateDHBasicAgreement(DHPublicKeyParameters publicKey, DHPrivateKeyParameters privateKey) { return TlsDHUtils.calculateDHBasicAgreement(publicKey, privateKey); } protected AsymmetricCipherKeyPair generateDHKeyPair(DHParameters dhParams) { return TlsDHUtils.generateDHKeyPair(context.getSecureRandom(), dhParams); } protected void generateEphemeralClientKeyExchange(DHParameters dhParams, OutputStream os) throws IOException { this.dhAgreeClientPrivateKey = TlsDHUtils.generateEphemeralClientKeyExchange(context.getSecureRandom(), dhParams, os); } protected DHPublicKeyParameters validateDHPublicKey(DHPublicKeyParameters key) throws IOException { return TlsDHUtils.validateDHPublicKey(key); } }