package org.spongycastle.crypto.engines; import java.security.SecureRandom; import org.spongycastle.crypto.CipherParameters; import org.spongycastle.crypto.Digest; import org.spongycastle.crypto.InvalidCipherTextException; import org.spongycastle.crypto.Wrapper; import org.spongycastle.crypto.digests.SHA1Digest; import org.spongycastle.crypto.modes.CBCBlockCipher; import org.spongycastle.crypto.params.ParametersWithIV; import org.spongycastle.crypto.params.ParametersWithRandom; import org.spongycastle.util.Arrays; /** * Wrap keys according to RFC 3217 - RC2 mechanism */ public class RC2WrapEngine implements Wrapper { /** Field engine */ private CBCBlockCipher engine; /** Field param */ private CipherParameters param; /** Field paramPlusIV */ private ParametersWithIV paramPlusIV; /** Field iv */ private byte[] iv; /** Field forWrapping */ private boolean forWrapping; private SecureRandom sr; /** Field IV2 */ private static final byte[] IV2 = { (byte) 0x4a, (byte) 0xdd, (byte) 0xa2, (byte) 0x2c, (byte) 0x79, (byte) 0xe8, (byte) 0x21, (byte) 0x05 }; // // checksum digest // Digest sha1 = new SHA1Digest(); byte[] digest = new byte[20]; /** * Method init * * @param forWrapping * @param param */ public void init(boolean forWrapping, CipherParameters param) { this.forWrapping = forWrapping; this.engine = new CBCBlockCipher(new RC2Engine()); if (param instanceof ParametersWithRandom) { ParametersWithRandom pWithR = (ParametersWithRandom)param; sr = pWithR.getRandom(); param = pWithR.getParameters(); } else { sr = new SecureRandom(); } if (param instanceof ParametersWithIV) { this.paramPlusIV = (ParametersWithIV)param; this.iv = this.paramPlusIV.getIV(); this.param = this.paramPlusIV.getParameters(); if (this.forWrapping) { if ((this.iv == null) || (this.iv.length != 8)) { throw new IllegalArgumentException("IV is not 8 octets"); } } else { throw new IllegalArgumentException( "You should not supply an IV for unwrapping"); } } else { this.param = param; if (this.forWrapping) { // Hm, we have no IV but we want to wrap ?!? // well, then we have to create our own IV. this.iv = new byte[8]; sr.nextBytes(iv); this.paramPlusIV = new ParametersWithIV(this.param, this.iv); } } } /** * Method getAlgorithmName * * @return the algorithm name "RC2". */ public String getAlgorithmName() { return "RC2"; } /** * Method wrap * * @param in * @param inOff * @param inLen * @return the wrapped bytes. */ public byte[] wrap(byte[] in, int inOff, int inLen) { if (!forWrapping) { throw new IllegalStateException("Not initialized for wrapping"); } int length = inLen + 1; if ((length % 8) != 0) { length += 8 - (length % 8); } byte keyToBeWrapped[] = new byte[length]; keyToBeWrapped[0] = (byte)inLen; System.arraycopy(in, inOff, keyToBeWrapped, 1, inLen); byte[] pad = new byte[keyToBeWrapped.length - inLen - 1]; if (pad.length > 0) { sr.nextBytes(pad); System.arraycopy(pad, 0, keyToBeWrapped, inLen + 1, pad.length); } // Compute the CMS Key Checksum, (section 5.6.1), call this CKS. byte[] CKS = calculateCMSKeyChecksum(keyToBeWrapped); // Let WKCKS = WK || CKS where || is concatenation. byte[] WKCKS = new byte[keyToBeWrapped.length + CKS.length]; System.arraycopy(keyToBeWrapped, 0, WKCKS, 0, keyToBeWrapped.length); System.arraycopy(CKS, 0, WKCKS, keyToBeWrapped.length, CKS.length); // Encrypt WKCKS in CBC mode using KEK as the key and IV as the // initialization vector. Call the results TEMP1. byte TEMP1[] = new byte[WKCKS.length]; System.arraycopy(WKCKS, 0, TEMP1, 0, WKCKS.length); int noOfBlocks = WKCKS.length / engine.getBlockSize(); int extraBytes = WKCKS.length % engine.getBlockSize(); if (extraBytes != 0) { throw new IllegalStateException("Not multiple of block length"); } engine.init(true, paramPlusIV); for (int i = 0; i < noOfBlocks; i++) { int currentBytePos = i * engine.getBlockSize(); engine.processBlock(TEMP1, currentBytePos, TEMP1, currentBytePos); } // Left TEMP2 = IV || TEMP1. byte[] TEMP2 = new byte[this.iv.length + TEMP1.length]; System.arraycopy(this.iv, 0, TEMP2, 0, this.iv.length); System.arraycopy(TEMP1, 0, TEMP2, this.iv.length, TEMP1.length); // Reverse the order of the octets in TEMP2 and call the result TEMP3. byte[] TEMP3 = new byte[TEMP2.length]; for (int i = 0; i < TEMP2.length; i++) { TEMP3[i] = TEMP2[TEMP2.length - (i + 1)]; } // Encrypt TEMP3 in CBC mode using the KEK and an initialization vector // of 0x 4a dd a2 2c 79 e8 21 05. The resulting cipher text is the // desired // result. It is 40 octets long if a 168 bit key is being wrapped. ParametersWithIV param2 = new ParametersWithIV(this.param, IV2); this.engine.init(true, param2); for (int i = 0; i < noOfBlocks + 1; i++) { int currentBytePos = i * engine.getBlockSize(); engine.processBlock(TEMP3, currentBytePos, TEMP3, currentBytePos); } return TEMP3; } /** * Method unwrap * * @param in * @param inOff * @param inLen * @return the unwrapped bytes. * @throws InvalidCipherTextException */ public byte[] unwrap(byte[] in, int inOff, int inLen) throws InvalidCipherTextException { if (forWrapping) { throw new IllegalStateException("Not set for unwrapping"); } if (in == null) { throw new InvalidCipherTextException("Null pointer as ciphertext"); } if (inLen % engine.getBlockSize() != 0) { throw new InvalidCipherTextException("Ciphertext not multiple of " + engine.getBlockSize()); } /* * // Check if the length of the cipher text is reasonable given the key // * type. It must be 40 bytes for a 168 bit key and either 32, 40, or // * 48 bytes for a 128, 192, or 256 bit key. If the length is not * supported // or inconsistent with the algorithm for which the key is * intended, // return error. // // we do not accept 168 bit keys. it * has to be 192 bit. int lengthA = (estimatedKeyLengthInBit / 8) + 16; * int lengthB = estimatedKeyLengthInBit % 8; * * if ((lengthA != keyToBeUnwrapped.length) || (lengthB != 0)) { throw * new XMLSecurityException("empty"); } */ // Decrypt the cipher text with TRIPLedeS in CBC mode using the KEK // and an initialization vector (IV) of 0x4adda22c79e82105. Call the // output TEMP3. ParametersWithIV param2 = new ParametersWithIV(this.param, IV2); this.engine.init(false, param2); byte TEMP3[] = new byte[inLen]; System.arraycopy(in, inOff, TEMP3, 0, inLen); for (int i = 0; i < (TEMP3.length / engine.getBlockSize()); i++) { int currentBytePos = i * engine.getBlockSize(); engine.processBlock(TEMP3, currentBytePos, TEMP3, currentBytePos); } // Reverse the order of the octets in TEMP3 and call the result TEMP2. byte[] TEMP2 = new byte[TEMP3.length]; for (int i = 0; i < TEMP3.length; i++) { TEMP2[i] = TEMP3[TEMP3.length - (i + 1)]; } // Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining // octets. this.iv = new byte[8]; byte[] TEMP1 = new byte[TEMP2.length - 8]; System.arraycopy(TEMP2, 0, this.iv, 0, 8); System.arraycopy(TEMP2, 8, TEMP1, 0, TEMP2.length - 8); // Decrypt TEMP1 using TRIPLedeS in CBC mode using the KEK and the IV // found in the previous step. Call the result WKCKS. this.paramPlusIV = new ParametersWithIV(this.param, this.iv); this.engine.init(false, this.paramPlusIV); byte[] LCEKPADICV = new byte[TEMP1.length]; System.arraycopy(TEMP1, 0, LCEKPADICV, 0, TEMP1.length); for (int i = 0; i < (LCEKPADICV.length / engine.getBlockSize()); i++) { int currentBytePos = i * engine.getBlockSize(); engine.processBlock(LCEKPADICV, currentBytePos, LCEKPADICV, currentBytePos); } // Decompose LCEKPADICV. CKS is the last 8 octets and WK, the wrapped // key, are // those octets before the CKS. byte[] result = new byte[LCEKPADICV.length - 8]; byte[] CKStoBeVerified = new byte[8]; System.arraycopy(LCEKPADICV, 0, result, 0, LCEKPADICV.length - 8); System.arraycopy(LCEKPADICV, LCEKPADICV.length - 8, CKStoBeVerified, 0, 8); // Calculate a CMS Key Checksum, (section 5.6.1), over the WK and // compare // with the CKS extracted in the above step. If they are not equal, // return error. if (!checkCMSKeyChecksum(result, CKStoBeVerified)) { throw new InvalidCipherTextException( "Checksum inside ciphertext is corrupted"); } if ((result.length - ((result[0] & 0xff) + 1)) > 7) { throw new InvalidCipherTextException("too many pad bytes (" + (result.length - ((result[0] & 0xff) + 1)) + ")"); } // CEK is the wrapped key, now extracted for use in data decryption. byte[] CEK = new byte[result[0]]; System.arraycopy(result, 1, CEK, 0, CEK.length); return CEK; } /** * Some key wrap algorithms make use of the Key Checksum defined * in CMS [CMS-Algorithms]. This is used to provide an integrity * check value for the key being wrapped. The algorithm is * * - Compute the 20 octet SHA-1 hash on the key being wrapped. * - Use the first 8 octets of this hash as the checksum value. * * @param key * @return * @throws RuntimeException * @see http://www.w3.org/TR/xmlenc-core/#sec-CMSKeyChecksum */ private byte[] calculateCMSKeyChecksum( byte[] key) { byte[] result = new byte[8]; sha1.update(key, 0, key.length); sha1.doFinal(digest, 0); System.arraycopy(digest, 0, result, 0, 8); return result; } /** * @param key * @param checksum * @return * @see http://www.w3.org/TR/xmlenc-core/#sec-CMSKeyChecksum */ private boolean checkCMSKeyChecksum( byte[] key, byte[] checksum) { return Arrays.constantTimeAreEqual(calculateCMSKeyChecksum(key), checksum); } }