/* * Copyright 2014 The Netty Project * * The Netty Project licenses this file to you under the Apache License, * version 2.0 (the "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. */ package io.netty.handler.traffic; import io.netty.buffer.ByteBuf; import io.netty.channel.Channel; import io.netty.channel.ChannelHandler.Sharable; import io.netty.channel.ChannelConfig; import io.netty.channel.ChannelHandlerContext; import io.netty.channel.ChannelPromise; import io.netty.util.Attribute; import io.netty.util.concurrent.EventExecutor; import io.netty.util.internal.PlatformDependent; import io.netty.util.internal.logging.InternalLogger; import io.netty.util.internal.logging.InternalLoggerFactory; import java.util.AbstractCollection; import java.util.ArrayDeque; import java.util.Collection; import java.util.Iterator; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; /** * This implementation of the {@link AbstractTrafficShapingHandler} is for global * and per channel traffic shaping, that is to say a global limitation of the bandwidth, whatever * the number of opened channels and a per channel limitation of the bandwidth.<br><br> * This version shall not be in the same pipeline than other TrafficShapingHandler.<br><br> * * The general use should be as follow:<br> * <ul> * <li>Create your unique GlobalChannelTrafficShapingHandler like:<br><br> * <tt>GlobalChannelTrafficShapingHandler myHandler = new GlobalChannelTrafficShapingHandler(executor);</tt><br><br> * The executor could be the underlying IO worker pool<br> * <tt>pipeline.addLast(myHandler);</tt><br><br> * * <b>Note that this handler has a Pipeline Coverage of "all" which means only one such handler must be created * and shared among all channels as the counter must be shared among all channels.</b><br><br> * * Other arguments can be passed like write or read limitation (in bytes/s where 0 means no limitation) * or the check interval (in millisecond) that represents the delay between two computations of the * bandwidth and so the call back of the doAccounting method (0 means no accounting at all).<br> * Note that as this is a fusion of both Global and Channel Traffic Shaping, limits are in 2 sets, * respectively Global and Channel.<br><br> * * A value of 0 means no accounting for checkInterval. If you need traffic shaping but no such accounting, * it is recommended to set a positive value, even if it is high since the precision of the * Traffic Shaping depends on the period where the traffic is computed. The highest the interval, * the less precise the traffic shaping will be. It is suggested as higher value something close * to 5 or 10 minutes.<br><br> * * maxTimeToWait, by default set to 15s, allows to specify an upper bound of time shaping.<br><br> * </li> * <li>In your handler, you should consider to use the {@code channel.isWritable()} and * {@code channelWritabilityChanged(ctx)} to handle writability, or through * {@code future.addListener(new GenericFutureListener())} on the future returned by * {@code ctx.write()}.</li> * <li>You shall also consider to have object size in read or write operations relatively adapted to * the bandwidth you required: for instance having 10 MB objects for 10KB/s will lead to burst effect, * while having 100 KB objects for 1 MB/s should be smoothly handle by this TrafficShaping handler.<br><br></li> * <li>Some configuration methods will be taken as best effort, meaning * that all already scheduled traffics will not be * changed, but only applied to new traffics.<br> * So the expected usage of those methods are to be used not too often, * accordingly to the traffic shaping configuration.</li> * </ul><br> * * Be sure to call {@link #release()} once this handler is not needed anymore to release all internal resources. * This will not shutdown the {@link EventExecutor} as it may be shared, so you need to do this by your own. */ @Sharable public class GlobalChannelTrafficShapingHandler extends AbstractTrafficShapingHandler { private static final InternalLogger logger = InternalLoggerFactory.getInstance(GlobalChannelTrafficShapingHandler.class); /** * All queues per channel */ final ConcurrentMap<Integer, PerChannel> channelQueues = PlatformDependent.newConcurrentHashMap(); /** * Global queues size */ private final AtomicLong queuesSize = new AtomicLong(); /** * Maximum cumulative writing bytes for one channel among all (as long as channels stay the same) */ private final AtomicLong cumulativeWrittenBytes = new AtomicLong(); /** * Maximum cumulative read bytes for one channel among all (as long as channels stay the same) */ private final AtomicLong cumulativeReadBytes = new AtomicLong(); /** * Max size in the list before proposing to stop writing new objects from next handlers * for all channel (global) */ volatile long maxGlobalWriteSize = DEFAULT_MAX_SIZE * 100; // default 400MB /** * Limit in B/s to apply to write */ private volatile long writeChannelLimit; /** * Limit in B/s to apply to read */ private volatile long readChannelLimit; private static final float DEFAULT_DEVIATION = 0.1F; private static final float MAX_DEVIATION = 0.4F; private static final float DEFAULT_SLOWDOWN = 0.4F; private static final float DEFAULT_ACCELERATION = -0.1F; private volatile float maxDeviation; private volatile float accelerationFactor; private volatile float slowDownFactor; private volatile boolean readDeviationActive; private volatile boolean writeDeviationActive; static final class PerChannel { ArrayDeque<ToSend> messagesQueue; TrafficCounter channelTrafficCounter; long queueSize; long lastWriteTimestamp; long lastReadTimestamp; } /** * Create the global TrafficCounter */ void createGlobalTrafficCounter(ScheduledExecutorService executor) { // Default setMaxDeviation(DEFAULT_DEVIATION, DEFAULT_SLOWDOWN, DEFAULT_ACCELERATION); if (executor == null) { throw new IllegalArgumentException("Executor must not be null"); } TrafficCounter tc = new GlobalChannelTrafficCounter(this, executor, "GlobalChannelTC", checkInterval); setTrafficCounter(tc); tc.start(); } @Override int userDefinedWritabilityIndex() { return AbstractTrafficShapingHandler.GLOBALCHANNEL_DEFAULT_USER_DEFINED_WRITABILITY_INDEX; } /** * Create a new instance. * * @param executor * the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}. * @param writeGlobalLimit * 0 or a limit in bytes/s * @param readGlobalLimit * 0 or a limit in bytes/s * @param writeChannelLimit * 0 or a limit in bytes/s * @param readChannelLimit * 0 or a limit in bytes/s * @param checkInterval * The delay between two computations of performances for * channels or 0 if no stats are to be computed. * @param maxTime * The maximum delay to wait in case of traffic excess. */ public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor, long writeGlobalLimit, long readGlobalLimit, long writeChannelLimit, long readChannelLimit, long checkInterval, long maxTime) { super(writeGlobalLimit, readGlobalLimit, checkInterval, maxTime); createGlobalTrafficCounter(executor); this.writeChannelLimit = writeChannelLimit; this.readChannelLimit = readChannelLimit; } /** * Create a new instance. * * @param executor * the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}. * @param writeGlobalLimit * 0 or a limit in bytes/s * @param readGlobalLimit * 0 or a limit in bytes/s * @param writeChannelLimit * 0 or a limit in bytes/s * @param readChannelLimit * 0 or a limit in bytes/s * @param checkInterval * The delay between two computations of performances for * channels or 0 if no stats are to be computed. */ public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor, long writeGlobalLimit, long readGlobalLimit, long writeChannelLimit, long readChannelLimit, long checkInterval) { super(writeGlobalLimit, readGlobalLimit, checkInterval); this.writeChannelLimit = writeChannelLimit; this.readChannelLimit = readChannelLimit; createGlobalTrafficCounter(executor); } /** * Create a new instance. * * @param executor * the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}. * @param writeGlobalLimit * 0 or a limit in bytes/s * @param readGlobalLimit * 0 or a limit in bytes/s * @param writeChannelLimit * 0 or a limit in bytes/s * @param readChannelLimit * 0 or a limit in bytes/s */ public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor, long writeGlobalLimit, long readGlobalLimit, long writeChannelLimit, long readChannelLimit) { super(writeGlobalLimit, readGlobalLimit); this.writeChannelLimit = writeChannelLimit; this.readChannelLimit = readChannelLimit; createGlobalTrafficCounter(executor); } /** * Create a new instance. * * @param executor * the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}. * @param checkInterval * The delay between two computations of performances for * channels or 0 if no stats are to be computed. */ public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor, long checkInterval) { super(checkInterval); createGlobalTrafficCounter(executor); } /** * Create a new instance. * * @param executor * the {@link ScheduledExecutorService} to use for the {@link TrafficCounter}. */ public GlobalChannelTrafficShapingHandler(ScheduledExecutorService executor) { createGlobalTrafficCounter(executor); } /** * @return the current max deviation */ public float maxDeviation() { return maxDeviation; } /** * @return the current acceleration factor */ public float accelerationFactor() { return accelerationFactor; } /** * @return the current slow down factor */ public float slowDownFactor() { return slowDownFactor; } /** * @param maxDeviation * the maximum deviation to allow during computation of average, default deviation * being 0.1, so +/-10% of the desired bandwidth. Maximum being 0.4. * @param slowDownFactor * the factor set as +x% to the too fast client (minimal value being 0, meaning no * slow down factor), default being 40% (0.4). * @param accelerationFactor * the factor set as -x% to the too slow client (maximal value being 0, meaning no * acceleration factor), default being -10% (-0.1). */ public void setMaxDeviation(float maxDeviation, float slowDownFactor, float accelerationFactor) { if (maxDeviation > MAX_DEVIATION) { throw new IllegalArgumentException("maxDeviation must be <= " + MAX_DEVIATION); } if (slowDownFactor < 0) { throw new IllegalArgumentException("slowDownFactor must be >= 0"); } if (accelerationFactor > 0) { throw new IllegalArgumentException("accelerationFactor must be <= 0"); } this.maxDeviation = maxDeviation; this.accelerationFactor = 1 + accelerationFactor; this.slowDownFactor = 1 + slowDownFactor; } private void computeDeviationCumulativeBytes() { // compute the maximum cumulativeXxxxBytes among still connected Channels long maxWrittenBytes = 0; long maxReadBytes = 0; long minWrittenBytes = Long.MAX_VALUE; long minReadBytes = Long.MAX_VALUE; for (PerChannel perChannel : channelQueues.values()) { long value = perChannel.channelTrafficCounter.cumulativeWrittenBytes(); if (maxWrittenBytes < value) { maxWrittenBytes = value; } if (minWrittenBytes > value) { minWrittenBytes = value; } value = perChannel.channelTrafficCounter.cumulativeReadBytes(); if (maxReadBytes < value) { maxReadBytes = value; } if (minReadBytes > value) { minReadBytes = value; } } boolean multiple = channelQueues.size() > 1; readDeviationActive = multiple && minReadBytes < maxReadBytes / 2; writeDeviationActive = multiple && minWrittenBytes < maxWrittenBytes / 2; cumulativeWrittenBytes.set(maxWrittenBytes); cumulativeReadBytes.set(maxReadBytes); } @Override protected void doAccounting(TrafficCounter counter) { computeDeviationCumulativeBytes(); super.doAccounting(counter); } private long computeBalancedWait(float maxLocal, float maxGlobal, long wait) { if (maxGlobal == 0) { // no change return wait; } float ratio = maxLocal / maxGlobal; // if in the boundaries, same value if (ratio > maxDeviation) { if (ratio < 1 - maxDeviation) { return wait; } else { ratio = slowDownFactor; if (wait < MINIMAL_WAIT) { wait = MINIMAL_WAIT; } } } else { ratio = accelerationFactor; } return (long) (wait * ratio); } /** * @return the maxGlobalWriteSize */ public long getMaxGlobalWriteSize() { return maxGlobalWriteSize; } /** * Note the change will be taken as best effort, meaning * that all already scheduled traffics will not be * changed, but only applied to new traffics.<br> * So the expected usage of this method is to be used not too often, * accordingly to the traffic shaping configuration. * * @param maxGlobalWriteSize the maximum Global Write Size allowed in the buffer * globally for all channels before write suspended is set. */ public void setMaxGlobalWriteSize(long maxGlobalWriteSize) { if (maxGlobalWriteSize <= 0) { throw new IllegalArgumentException("maxGlobalWriteSize must be positive"); } this.maxGlobalWriteSize = maxGlobalWriteSize; } /** * @return the global size of the buffers for all queues. */ public long queuesSize() { return queuesSize.get(); } /** * @param newWriteLimit Channel write limit * @param newReadLimit Channel read limit */ public void configureChannel(long newWriteLimit, long newReadLimit) { writeChannelLimit = newWriteLimit; readChannelLimit = newReadLimit; long now = TrafficCounter.milliSecondFromNano(); for (PerChannel perChannel : channelQueues.values()) { perChannel.channelTrafficCounter.resetAccounting(now); } } /** * @return Channel write limit */ public long getWriteChannelLimit() { return writeChannelLimit; } /** * @param writeLimit Channel write limit */ public void setWriteChannelLimit(long writeLimit) { writeChannelLimit = writeLimit; long now = TrafficCounter.milliSecondFromNano(); for (PerChannel perChannel : channelQueues.values()) { perChannel.channelTrafficCounter.resetAccounting(now); } } /** * @return Channel read limit */ public long getReadChannelLimit() { return readChannelLimit; } /** * @param readLimit Channel read limit */ public void setReadChannelLimit(long readLimit) { readChannelLimit = readLimit; long now = TrafficCounter.milliSecondFromNano(); for (PerChannel perChannel : channelQueues.values()) { perChannel.channelTrafficCounter.resetAccounting(now); } } /** * Release all internal resources of this instance. */ public final void release() { trafficCounter.stop(); } private PerChannel getOrSetPerChannel(ChannelHandlerContext ctx) { // ensure creation is limited to one thread per channel Channel channel = ctx.channel(); Integer key = channel.hashCode(); PerChannel perChannel = channelQueues.get(key); if (perChannel == null) { perChannel = new PerChannel(); perChannel.messagesQueue = new ArrayDeque<ToSend>(); // Don't start it since managed through the Global one perChannel.channelTrafficCounter = new TrafficCounter(this, null, "ChannelTC" + ctx.channel().hashCode(), checkInterval); perChannel.queueSize = 0L; perChannel.lastReadTimestamp = TrafficCounter.milliSecondFromNano(); perChannel.lastWriteTimestamp = perChannel.lastReadTimestamp; channelQueues.put(key, perChannel); } return perChannel; } @Override public void handlerAdded(ChannelHandlerContext ctx) throws Exception { getOrSetPerChannel(ctx); trafficCounter.resetCumulativeTime(); super.handlerAdded(ctx); } @Override public void handlerRemoved(ChannelHandlerContext ctx) throws Exception { trafficCounter.resetCumulativeTime(); Channel channel = ctx.channel(); Integer key = channel.hashCode(); PerChannel perChannel = channelQueues.remove(key); if (perChannel != null) { // write operations need synchronization synchronized (perChannel) { if (channel.isActive()) { for (ToSend toSend : perChannel.messagesQueue) { long size = calculateSize(toSend.toSend); trafficCounter.bytesRealWriteFlowControl(size); perChannel.channelTrafficCounter.bytesRealWriteFlowControl(size); perChannel.queueSize -= size; queuesSize.addAndGet(-size); ctx.write(toSend.toSend, toSend.promise); } } else { queuesSize.addAndGet(-perChannel.queueSize); for (ToSend toSend : perChannel.messagesQueue) { if (toSend.toSend instanceof ByteBuf) { ((ByteBuf) toSend.toSend).release(); } } } perChannel.messagesQueue.clear(); } } releaseWriteSuspended(ctx); releaseReadSuspended(ctx); super.handlerRemoved(ctx); } @Override public void channelRead(final ChannelHandlerContext ctx, final Object msg) throws Exception { long size = calculateSize(msg); long now = TrafficCounter.milliSecondFromNano(); if (size > 0) { // compute the number of ms to wait before reopening the channel long waitGlobal = trafficCounter.readTimeToWait(size, getReadLimit(), maxTime, now); Integer key = ctx.channel().hashCode(); PerChannel perChannel = channelQueues.get(key); long wait = 0; if (perChannel != null) { wait = perChannel.channelTrafficCounter.readTimeToWait(size, readChannelLimit, maxTime, now); if (readDeviationActive) { // now try to balance between the channels long maxLocalRead; maxLocalRead = perChannel.channelTrafficCounter.cumulativeReadBytes(); long maxGlobalRead = cumulativeReadBytes.get(); if (maxLocalRead <= 0) { maxLocalRead = 0; } if (maxGlobalRead < maxLocalRead) { maxGlobalRead = maxLocalRead; } wait = computeBalancedWait(maxLocalRead, maxGlobalRead, wait); } } if (wait < waitGlobal) { wait = waitGlobal; } wait = checkWaitReadTime(ctx, wait, now); if (wait >= MINIMAL_WAIT) { // At least 10ms seems a minimal // time in order to try to limit the traffic // Only AutoRead AND HandlerActive True means Context Active ChannelConfig config = ctx.channel().config(); if (logger.isDebugEnabled()) { logger.debug("Read Suspend: " + wait + ':' + config.isAutoRead() + ':' + isHandlerActive(ctx)); } if (config.isAutoRead() && isHandlerActive(ctx)) { config.setAutoRead(false); ctx.attr(READ_SUSPENDED).set(true); // Create a Runnable to reactive the read if needed. If one was create before it will just be // reused to limit object creation Attribute<Runnable> attr = ctx.attr(REOPEN_TASK); Runnable reopenTask = attr.get(); if (reopenTask == null) { reopenTask = new ReopenReadTimerTask(ctx); attr.set(reopenTask); } ctx.executor().schedule(reopenTask, wait, TimeUnit.MILLISECONDS); if (logger.isDebugEnabled()) { logger.debug("Suspend final status => " + config.isAutoRead() + ':' + isHandlerActive(ctx) + " will reopened at: " + wait); } } } } informReadOperation(ctx, now); ctx.fireChannelRead(msg); } @Override protected long checkWaitReadTime(final ChannelHandlerContext ctx, long wait, final long now) { Integer key = ctx.channel().hashCode(); PerChannel perChannel = channelQueues.get(key); if (perChannel != null) { if (wait > maxTime && now + wait - perChannel.lastReadTimestamp > maxTime) { wait = maxTime; } } return wait; } @Override protected void informReadOperation(final ChannelHandlerContext ctx, final long now) { Integer key = ctx.channel().hashCode(); PerChannel perChannel = channelQueues.get(key); if (perChannel != null) { perChannel.lastReadTimestamp = now; } } private static final class ToSend { final long relativeTimeAction; final Object toSend; final ChannelPromise promise; final long size; private ToSend(final long delay, final Object toSend, final long size, final ChannelPromise promise) { relativeTimeAction = delay; this.toSend = toSend; this.size = size; this.promise = promise; } } protected long maximumCumulativeWrittenBytes() { return cumulativeWrittenBytes.get(); } protected long maximumCumulativeReadBytes() { return cumulativeReadBytes.get(); } /** * To allow for instance doAccounting to use the TrafficCounter per channel. * @return the list of TrafficCounters that exists at the time of the call. */ public Collection<TrafficCounter> channelTrafficCounters() { return new AbstractCollection<TrafficCounter>() { @Override public Iterator<TrafficCounter> iterator() { return new Iterator<TrafficCounter>() { final Iterator<PerChannel> iter = channelQueues.values().iterator(); @Override public boolean hasNext() { return iter.hasNext(); } @Override public TrafficCounter next() { return iter.next().channelTrafficCounter; } @Override public void remove() { throw new UnsupportedOperationException(); } }; } @Override public int size() { return channelQueues.size(); } }; } @Override public void write(final ChannelHandlerContext ctx, final Object msg, final ChannelPromise promise) throws Exception { long size = calculateSize(msg); long now = TrafficCounter.milliSecondFromNano(); if (size > 0) { // compute the number of ms to wait before continue with the channel long waitGlobal = trafficCounter.writeTimeToWait(size, getWriteLimit(), maxTime, now); Integer key = ctx.channel().hashCode(); PerChannel perChannel = channelQueues.get(key); long wait = 0; if (perChannel != null) { wait = perChannel.channelTrafficCounter.writeTimeToWait(size, writeChannelLimit, maxTime, now); if (writeDeviationActive) { // now try to balance between the channels long maxLocalWrite; maxLocalWrite = perChannel.channelTrafficCounter.cumulativeWrittenBytes(); long maxGlobalWrite = cumulativeWrittenBytes.get(); if (maxLocalWrite <= 0) { maxLocalWrite = 0; } if (maxGlobalWrite < maxLocalWrite) { maxGlobalWrite = maxLocalWrite; } wait = computeBalancedWait(maxLocalWrite, maxGlobalWrite, wait); } } if (wait < waitGlobal) { wait = waitGlobal; } if (wait >= MINIMAL_WAIT) { if (logger.isDebugEnabled()) { logger.debug("Write suspend: " + wait + ':' + ctx.channel().config().isAutoRead() + ':' + isHandlerActive(ctx)); } submitWrite(ctx, msg, size, wait, now, promise); return; } } // to maintain order of write submitWrite(ctx, msg, size, 0, now, promise); } @Override protected void submitWrite(final ChannelHandlerContext ctx, final Object msg, final long size, final long writedelay, final long now, final ChannelPromise promise) { Channel channel = ctx.channel(); Integer key = channel.hashCode(); PerChannel perChannel = channelQueues.get(key); if (perChannel == null) { // in case write occurs before handlerAdded is raized for this handler // imply a synchronized only if needed perChannel = getOrSetPerChannel(ctx); } final ToSend newToSend; long delay = writedelay; boolean globalSizeExceeded = false; // write operations need synchronization synchronized (perChannel) { if (writedelay == 0 && perChannel.messagesQueue.isEmpty()) { trafficCounter.bytesRealWriteFlowControl(size); perChannel.channelTrafficCounter.bytesRealWriteFlowControl(size); ctx.write(msg, promise); perChannel.lastWriteTimestamp = now; return; } if (delay > maxTime && now + delay - perChannel.lastWriteTimestamp > maxTime) { delay = maxTime; } newToSend = new ToSend(delay + now, msg, size, promise); perChannel.messagesQueue.addLast(newToSend); perChannel.queueSize += size; queuesSize.addAndGet(size); checkWriteSuspend(ctx, delay, perChannel.queueSize); if (queuesSize.get() > maxGlobalWriteSize) { globalSizeExceeded = true; } } if (globalSizeExceeded) { setUserDefinedWritability(ctx, false); } final long futureNow = newToSend.relativeTimeAction; final PerChannel forSchedule = perChannel; ctx.executor().schedule(new Runnable() { @Override public void run() { sendAllValid(ctx, forSchedule, futureNow); } }, delay, TimeUnit.MILLISECONDS); } private void sendAllValid(final ChannelHandlerContext ctx, final PerChannel perChannel, final long now) { // write operations need synchronization synchronized (perChannel) { ToSend newToSend = perChannel.messagesQueue.pollFirst(); for (; newToSend != null; newToSend = perChannel.messagesQueue.pollFirst()) { if (newToSend.relativeTimeAction <= now) { long size = newToSend.size; trafficCounter.bytesRealWriteFlowControl(size); perChannel.channelTrafficCounter.bytesRealWriteFlowControl(size); perChannel.queueSize -= size; queuesSize.addAndGet(-size); ctx.write(newToSend.toSend, newToSend.promise); perChannel.lastWriteTimestamp = now; } else { perChannel.messagesQueue.addFirst(newToSend); break; } } if (perChannel.messagesQueue.isEmpty()) { releaseWriteSuspended(ctx); } } ctx.flush(); } @Override public String toString() { return new StringBuilder(340).append(super.toString()) .append(" Write Channel Limit: ").append(writeChannelLimit) .append(" Read Channel Limit: ").append(readChannelLimit).toString(); } }