/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hbase.replication.regionserver; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertTrue; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.hbase.testclassification.ReplicationTests; import org.apache.hadoop.hbase.testclassification.SmallTests; import org.junit.Test; import org.junit.experimental.categories.Category; @Category({ReplicationTests.class, SmallTests.class}) public class TestReplicationThrottler { private static final Log LOG = LogFactory.getLog(TestReplicationThrottler.class); /** * unit test for throttling */ @Test(timeout=10000) public void testThrottling() { LOG.info("testThrottling"); // throttle bandwidth is 100 and 10 bytes/cycle respectively ReplicationThrottler throttler1 = new ReplicationThrottler(100); ReplicationThrottler throttler2 = new ReplicationThrottler(10); long ticks1 = throttler1.getNextSleepInterval(1000); long ticks2 = throttler2.getNextSleepInterval(1000); // 1. the first push size is 1000, though 1000 bytes exceeds 100/10 // bandwidthes, but no sleep since it's the first push of current // cycle, amortizing occurs when next push arrives assertEquals(0, ticks1); assertEquals(0, ticks2); throttler1.addPushSize(1000); throttler2.addPushSize(1000); ticks1 = throttler1.getNextSleepInterval(5); ticks2 = throttler2.getNextSleepInterval(5); // 2. when the second push(5) arrives and throttling(5) is called, the // current cyclePushSize is 1000 bytes, this should make throttler1 // sleep 1000/100 = 10 cycles = 1s and make throttler2 sleep 1000/10 // = 100 cycles = 10s before the second push occurs -- amortize case // after amortizing, both cycleStartTick and cyclePushSize are reset // // Note: in a slow machine, the sleep interval might be less than ideal ticks. // If it is 75% of expected value, its is still acceptable. if (ticks1 != 1000 && ticks1 != 999) { assertTrue(ticks1 >= 750 && ticks1 <=1000); } if (ticks2 != 10000 && ticks2 != 9999) { assertTrue(ticks2 >= 7500 && ticks2 <=10000); } throttler1.resetStartTick(); throttler2.resetStartTick(); throttler1.addPushSize(5); throttler2.addPushSize(5); ticks1 = throttler1.getNextSleepInterval(45); ticks2 = throttler2.getNextSleepInterval(45); // 3. when the third push(45) arrives and throttling(45) is called, the // current cyclePushSize is 5 bytes, 50-byte makes throttler1 no // sleep, but can make throttler2 delay to next cycle // note: in real case, sleep time should cover time elapses during push // operation assertTrue(ticks1 == 0); if (ticks2 != 100 && ticks2 != 99) { assertTrue(ticks1 >= 75 && ticks1 <=100); } throttler2.resetStartTick(); throttler1.addPushSize(45); throttler2.addPushSize(45); ticks1 = throttler1.getNextSleepInterval(60); ticks2 = throttler2.getNextSleepInterval(60); // 4. when the fourth push(60) arrives and throttling(60) is called, throttler1 // delay to next cycle since 45+60 == 105; and throttler2 should firstly sleep // ceiling(45/10)= 5 cycles = 500ms to amortize previous push // // Note: in real case, sleep time should cover time elapses during push operation if (ticks1 != 100 && ticks1 != 99) { assertTrue(ticks1 >= 75 && ticks1 <=100); } if (ticks2 != 500 && ticks2 != 499) { assertTrue(ticks1 >= 375 && ticks1 <=500); } } }