/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.codehaus.groovy.ast; import org.codehaus.groovy.GroovyBugError; import org.codehaus.groovy.ast.expr.*; import org.codehaus.groovy.ast.stmt.BlockStatement; import org.codehaus.groovy.ast.stmt.ExpressionStatement; import org.codehaus.groovy.ast.stmt.Statement; import org.codehaus.groovy.ast.tools.ClassNodeUtils; import org.codehaus.groovy.ast.tools.ParameterUtils; import org.codehaus.groovy.control.CompilePhase; import org.codehaus.groovy.transform.ASTTransformation; import org.codehaus.groovy.transform.GroovyASTTransformation; import org.codehaus.groovy.vmplugin.VMPluginFactory; import org.objectweb.asm.Opcodes; import java.lang.reflect.Array; import java.util.ArrayList; import java.util.Collections; import java.util.EnumMap; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedHashSet; import java.util.LinkedList; import java.util.List; import java.util.ListIterator; import java.util.Map; import java.util.Set; /** * Represents a class in the AST. * <p> * A ClassNode should be created using the methods in ClassHelper. * This ClassNode may be used to represent a class declaration or * any other type. This class uses a proxy mechanism allowing to * create a class for a plain name at AST creation time. In another * phase of the compiler the real ClassNode for the plain name may be * found. To avoid the need of exchanging this ClassNode with an * instance of the correct ClassNode the correct ClassNode is set as * redirect. Most method calls are then redirected to that ClassNode. * <p> * There are three types of ClassNodes: * <ol> * <li> Primary ClassNodes:<br> * A primary ClassNode is one where we have a source representation * which is to be compiled by Groovy and which we have an AST for. * The groovy compiler will output one class for each such ClassNode * that passes through AsmBytecodeGenerator... not more, not less. * That means for example Closures become such ClassNodes too at * some point. * <li> ClassNodes create through different sources (typically created * from a java.lang.reflect.Class object):<br> * The compiler will not output classes from these, the methods * usually do not contain bodies. These kind of ClassNodes will be * used in different checks, but not checks that work on the method * bodies. For example if such a ClassNode is a super class to a primary * ClassNode, then the abstract method test and others will be done * with data based on these. Theoretically it is also possible to mix both * (1 and 2) kind of classes in a hierarchy, but this probably works only * in the newest Groovy versions. Such ClassNodes normally have to * isResolved() returning true without having a redirect.In the Groovy * compiler the only version of this, that exists, is a ClassNode created * through a Class instance * <li> Labels:<br> * ClassNodes created through ClassHelper.makeWithoutCaching. They * are place holders, its redirect points to the real structure, which can * be a label too, but following all redirects it should end with a ClassNode * from one of the other two categories. If ResolveVisitor finds such a * node, it tries to set the redirects. Any such label created after * ResolveVisitor has done its work needs to have a redirect pointing to * case 1 or 2. If not the compiler may react strange... this can be considered * as a kind of dangling pointer. * </ol> * <b>Note:</b> the redirect mechanism is only allowed for classes * that are not primary ClassNodes. Typically this is done for classes * created by name only. The redirect itself can be any type of ClassNode. * <p> * To describe generic type signature see {@link #getGenericsTypes()} and * {@link #setGenericsTypes(GenericsType[])}. These methods are not proxied, * they describe the type signature used at the point of declaration or the * type signatures provided by the class. If the type signatures provided * by the class are needed, then a call to {@link #redirect()} will help. * * @see org.codehaus.groovy.ast.ClassHelper */ public class ClassNode extends AnnotatedNode implements Opcodes { private static class MapOfLists { private Map<Object, List<MethodNode>> map; public List<MethodNode> get(Object key) { return map == null ? null : map.get(key); } public List<MethodNode> getNotNull(Object key) { List<MethodNode> ret = get(key); if (ret==null) ret = Collections.emptyList(); return ret; } public void put(Object key, MethodNode value) { if (map == null) { map = new HashMap<Object, List<MethodNode>>(); } if (map.containsKey(key)) { get(key).add(value); } else { List<MethodNode> list = new ArrayList<MethodNode>(2); list.add(value); map.put(key, list); } } public void remove(Object key, MethodNode value) { get(key).remove(value); } } public static final ClassNode[] EMPTY_ARRAY = new ClassNode[0]; public static final ClassNode THIS = new ClassNode(Object.class); public static final ClassNode SUPER = new ClassNode(Object.class); private String name; private int modifiers; private boolean syntheticPublic; private ClassNode[] interfaces; private MixinNode[] mixins; private List<ConstructorNode> constructors; private List<Statement> objectInitializers; private MapOfLists methods; private List<MethodNode> methodsList; private LinkedList<FieldNode> fields; private List<PropertyNode> properties; private Map<String, FieldNode> fieldIndex; private ModuleNode module; private CompileUnit compileUnit; private boolean staticClass = false; private boolean scriptBody = false; private boolean script; private ClassNode superClass; protected boolean isPrimaryNode; protected List<InnerClassNode> innerClasses; /** * The ASTTransformations to be applied to the Class */ private Map<CompilePhase, Map<Class<? extends ASTTransformation>, Set<ASTNode>>> transformInstances; // use this to synchronize access for the lazy init protected final Object lazyInitLock = new Object(); // clazz!=null when resolved protected Class clazz; // only false when this classNode is constructed from a class private volatile boolean lazyInitDone=true; // not null if if the ClassNode is an array private ClassNode componentType = null; // if not null this instance is handled as proxy // for the redirect private ClassNode redirect=null; // flag if the classes or its members are annotated private boolean annotated; // type spec for generics private GenericsType[] genericsTypes=null; private boolean usesGenerics=false; // if set to true the name getGenericsTypes consists // of 1 element describing the name of the placeholder private boolean placeholder; /** * Returns the ClassNode this ClassNode is redirecting to. */ public ClassNode redirect(){ if (redirect==null) return this; return redirect.redirect(); } /** * Sets this instance as proxy for the given ClassNode. * @param cn the class to redirect to. If set to null the redirect will be removed */ public void setRedirect(ClassNode cn) { if (isPrimaryNode) throw new GroovyBugError("tried to set a redirect for a primary ClassNode ("+getName()+"->"+cn.getName()+")."); if (cn!=null) cn = cn.redirect(); if (cn==this) return; redirect = cn; } /** * Returns a ClassNode representing an array of the class * represented by this ClassNode */ public ClassNode makeArray() { if (redirect!=null) { ClassNode res = redirect().makeArray(); res.componentType = this; return res; } ClassNode cn; if (clazz!=null) { Class ret = Array.newInstance(clazz,0).getClass(); // don't use the ClassHelper here! cn = new ClassNode(ret,this); } else { cn = new ClassNode(this); } return cn; } /** * @return true if this instance is a primary ClassNode */ public boolean isPrimaryClassNode() { return redirect().isPrimaryNode || (componentType != null && componentType.isPrimaryClassNode()); } /* * Constructor used by makeArray() if no real class is available */ private ClassNode(ClassNode componentType) { this(componentType.getName()+"[]", ACC_PUBLIC, ClassHelper.OBJECT_TYPE); this.componentType = componentType.redirect(); isPrimaryNode=false; } /* * Constructor used by makeArray() if a real class is available */ private ClassNode(Class c, ClassNode componentType) { this(c); this.componentType = componentType; isPrimaryNode=false; } /** * Creates a ClassNode from a real class. The resulting * ClassNode will not be a primary ClassNode. */ public ClassNode(Class c) { this(c.getName(), c.getModifiers(), null, null ,MixinNode.EMPTY_ARRAY); clazz=c; lazyInitDone=false; CompileUnit cu = getCompileUnit(); if (cu!=null) cu.addClass(this); isPrimaryNode=false; } /** * The complete class structure will be initialized only when really * needed to avoid having too many objects during compilation */ private void lazyClassInit() { if (lazyInitDone) return; synchronized (lazyInitLock) { if (redirect!=null) { throw new GroovyBugError("lazyClassInit called on a proxy ClassNode, that must not happen."+ "A redirect() call is missing somewhere!"); } if (lazyInitDone) return; VMPluginFactory.getPlugin().configureClassNode(compileUnit,this); lazyInitDone = true; } } // added to track the enclosing method for local inner classes private MethodNode enclosingMethod = null; public MethodNode getEnclosingMethod() { return redirect().enclosingMethod; } public void setEnclosingMethod(MethodNode enclosingMethod) { redirect().enclosingMethod = enclosingMethod; } /** * Indicates that this class has been "promoted" to public by * Groovy when in fact there was no public modifier explicitly * in the source code. I.e. it remembers that it has applied * Groovy's "public classes by default" rule.This property is * typically only of interest to AST transform writers. * * @return true if this class is public but had no explicit public modifier */ public boolean isSyntheticPublic() { return syntheticPublic; } public void setSyntheticPublic(boolean syntheticPublic) { this.syntheticPublic = syntheticPublic; } /** * @param name is the full name of the class * @param modifiers the modifiers, * @param superClass the base class name - use "java.lang.Object" if no direct * base class * @see org.objectweb.asm.Opcodes */ public ClassNode(String name, int modifiers, ClassNode superClass) { this(name, modifiers, superClass, EMPTY_ARRAY, MixinNode.EMPTY_ARRAY); } /** * @param name is the full name of the class * @param modifiers the modifiers, * @param superClass the base class name - use "java.lang.Object" if no direct * base class * @param interfaces the interfaces for this class * @param mixins the mixins for this class * @see org.objectweb.asm.Opcodes */ public ClassNode(String name, int modifiers, ClassNode superClass, ClassNode[] interfaces, MixinNode[] mixins) { this.name = name; this.modifiers = modifiers; this.superClass = superClass; this.interfaces = interfaces; this.mixins = mixins; isPrimaryNode = true; if (superClass!=null) { usesGenerics = superClass.isUsingGenerics(); } if (!usesGenerics && interfaces!=null) { for (ClassNode anInterface : interfaces) { usesGenerics = usesGenerics || anInterface.isUsingGenerics(); if (usesGenerics) break; } } this.methods = new MapOfLists(); this.methodsList = Collections.emptyList(); } /** * Sets the superclass of this ClassNode */ public void setSuperClass(ClassNode superClass) { redirect().superClass = superClass; } /** * @return the list of FieldNode's associated with this ClassNode */ public List<FieldNode> getFields() { if (redirect!=null) return redirect().getFields(); lazyClassInit(); if (fields == null) fields = new LinkedList<FieldNode> (); return fields; } /** * @return the array of interfaces which this ClassNode implements */ public ClassNode[] getInterfaces() { if (redirect!=null) return redirect().getInterfaces(); lazyClassInit(); return interfaces; } public void setInterfaces(ClassNode[] interfaces) { if (redirect!=null) { redirect().setInterfaces(interfaces); } else { this.interfaces = interfaces; } } /** * @return the array of mixins associated with this ClassNode */ public MixinNode[] getMixins() { return redirect().mixins; } /** * @return the list of methods associated with this ClassNode */ public List<MethodNode> getMethods() { if (redirect!=null) return redirect().getMethods(); lazyClassInit(); return methodsList; } /** * @return the list of abstract methods associated with this * ClassNode or null if there are no such methods */ public List<MethodNode> getAbstractMethods() { List<MethodNode> result = new ArrayList<MethodNode>(3); for (MethodNode method : getDeclaredMethodsMap().values()) { if (method.isAbstract()) { result.add(method); } } if (result.isEmpty()) { return null; } else { return result; } } public List<MethodNode> getAllDeclaredMethods() { return new ArrayList<MethodNode>(getDeclaredMethodsMap().values()); } public Set<ClassNode> getAllInterfaces () { Set<ClassNode> res = new LinkedHashSet<ClassNode>(); getAllInterfaces(res); return res; } private void getAllInterfaces(Set<ClassNode> res) { if (isInterface()) res.add(this); for (ClassNode anInterface : getInterfaces()) { res.add(anInterface); anInterface.getAllInterfaces(res); } } public Map<String, MethodNode> getDeclaredMethodsMap() { // Start off with the methods from the superclass. ClassNode parent = getSuperClass(); Map<String, MethodNode> result; if (parent != null) { result = parent.getDeclaredMethodsMap(); } else { result = new HashMap<String, MethodNode>(); } ClassNodeUtils.addInterfaceMethods(this, result); // And add in the methods implemented in this class. for (MethodNode method : getMethods()) { String sig = method.getTypeDescriptor(); result.put(sig, method); } return result; } public String getName() { return redirect().name; } public String getUnresolvedName() { return name; } public String setName(String name) { return redirect().name=name; } public int getModifiers() { return redirect().modifiers; } public void setModifiers(int modifiers) { redirect().modifiers = modifiers; } public List<PropertyNode> getProperties() { final ClassNode r = redirect(); if (r.properties == null) r.properties = new ArrayList<PropertyNode> (); return r.properties; } public List<ConstructorNode> getDeclaredConstructors() { if (redirect != null) return redirect().getDeclaredConstructors(); lazyClassInit(); if (constructors == null) constructors = new ArrayList<ConstructorNode> (); return constructors; } /** * Finds a constructor matching the given parameters in this class. * * @return the constructor matching the given parameters or null */ public ConstructorNode getDeclaredConstructor(Parameter[] parameters) { for (ConstructorNode method : getDeclaredConstructors()) { if (parametersEqual(method.getParameters(), parameters)) { return method; } } return null; } public void removeConstructor(ConstructorNode node) { redirect().constructors.remove(node); } public ModuleNode getModule() { return redirect().module; } public PackageNode getPackage() { return getModule() == null ? null : getModule().getPackage(); } public void setModule(ModuleNode module) { redirect().module = module; if (module != null) { redirect().compileUnit = module.getUnit(); } } public void addField(FieldNode node) { final ClassNode r = redirect(); node.setDeclaringClass(r); node.setOwner(r); if (r.fields == null) r.fields = new LinkedList<FieldNode> (); if (r.fieldIndex == null) r.fieldIndex = new HashMap<String,FieldNode> (); r.fields.add(node); r.fieldIndex.put(node.getName(), node); } public void addFieldFirst(FieldNode node) { final ClassNode r = redirect(); node.setDeclaringClass(r); node.setOwner(r); if (r.fields == null) r.fields = new LinkedList<FieldNode> (); if (r.fieldIndex == null) r.fieldIndex = new HashMap<String,FieldNode> (); r.fields.addFirst(node); r.fieldIndex.put(node.getName(), node); } public Map<String, FieldNode> getFieldIndex() { return fieldIndex; } public void addProperty(PropertyNode node) { node.setDeclaringClass(redirect()); FieldNode field = node.getField(); addField(field); final ClassNode r = redirect(); if (r.properties == null) r.properties = new ArrayList<PropertyNode> (); r.properties.add(node); } public PropertyNode addProperty(String name, int modifiers, ClassNode type, Expression initialValueExpression, Statement getterBlock, Statement setterBlock) { for (PropertyNode pn : getProperties()) { if (pn.getName().equals(name)) { if (pn.getInitialExpression() == null && initialValueExpression != null) pn.getField().setInitialValueExpression(initialValueExpression); if (pn.getGetterBlock() == null && getterBlock != null) pn.setGetterBlock(getterBlock); if (pn.getSetterBlock() == null && setterBlock != null) pn.setSetterBlock(setterBlock); return pn; } } PropertyNode node = new PropertyNode(name, modifiers, type, redirect(), initialValueExpression, getterBlock, setterBlock); addProperty(node); return node; } public boolean hasProperty(String name) { return getProperty(name) != null; } public PropertyNode getProperty(String name) { for (PropertyNode pn : getProperties()) { if (pn.getName().equals(name)) return pn; } return null; } public void addConstructor(ConstructorNode node) { node.setDeclaringClass(this); final ClassNode r = redirect(); if (r.constructors == null) r.constructors = new ArrayList<ConstructorNode> (); r.constructors.add(node); } public ConstructorNode addConstructor(int modifiers, Parameter[] parameters, ClassNode[] exceptions, Statement code) { ConstructorNode node = new ConstructorNode(modifiers, parameters, exceptions, code); addConstructor(node); return node; } public void addMethod(MethodNode node) { node.setDeclaringClass(this); ClassNode base = redirect(); if (base.methodsList.isEmpty()) { base.methodsList = new ArrayList<MethodNode>(); } base.methodsList.add(node); base.methods.put(node.getName(), node); } public void removeMethod(MethodNode node) { ClassNode base = redirect(); if (!base.methodsList.isEmpty()) { base.methodsList.remove(node); } base.methods.remove(node.getName(), node); } /** * If a method with the given name and parameters is already defined then it is returned * otherwise the given method is added to this node. This method is useful for * default method adding like getProperty() or invokeMethod() where there may already * be a method defined in a class and so the default implementations should not be added * if already present. */ public MethodNode addMethod(String name, int modifiers, ClassNode returnType, Parameter[] parameters, ClassNode[] exceptions, Statement code) { MethodNode other = getDeclaredMethod(name, parameters); // let's not add duplicate methods if (other != null) { return other; } MethodNode node = new MethodNode(name, modifiers, returnType, parameters, exceptions, code); addMethod(node); return node; } /** * @see #getDeclaredMethod(String, Parameter[]) */ public boolean hasDeclaredMethod(String name, Parameter[] parameters) { MethodNode other = getDeclaredMethod(name, parameters); return other != null; } /** * @see #getMethod(String, Parameter[]) */ public boolean hasMethod(String name, Parameter[] parameters) { MethodNode other = getMethod(name, parameters); return other != null; } /** * Adds a synthetic method as part of the compilation process */ public MethodNode addSyntheticMethod(String name, int modifiers, ClassNode returnType, Parameter[] parameters, ClassNode[] exceptions, Statement code) { MethodNode answer = addMethod(name, modifiers|ACC_SYNTHETIC, returnType, parameters, exceptions, code); answer.setSynthetic(true); return answer; } public FieldNode addField(String name, int modifiers, ClassNode type, Expression initialValue) { FieldNode node = new FieldNode(name, modifiers, type, redirect(), initialValue); addField(node); return node; } public FieldNode addFieldFirst(String name, int modifiers, ClassNode type, Expression initialValue) { FieldNode node = new FieldNode(name, modifiers, type, redirect(), initialValue); addFieldFirst(node); return node; } public void addInterface(ClassNode type) { // let's check if it already implements an interface boolean skip = false; ClassNode[] interfaces = redirect().interfaces; for (ClassNode existing : interfaces) { if (type.equals(existing)) { skip = true; break; } } if (!skip) { ClassNode[] newInterfaces = new ClassNode[interfaces.length + 1]; System.arraycopy(interfaces, 0, newInterfaces, 0, interfaces.length); newInterfaces[interfaces.length] = type; redirect().interfaces = newInterfaces; } } public boolean equals(Object o) { if (redirect!=null) return redirect().equals(o); if (!(o instanceof ClassNode)) return false; ClassNode cn = (ClassNode) o; return (cn.getText().equals(getText())); } public int hashCode() { if (redirect!=null) return redirect().hashCode(); return getName().hashCode(); } public void addMixin(MixinNode mixin) { // let's check if it already uses a mixin MixinNode[] mixins = redirect().mixins; boolean skip = false; for (MixinNode existing : mixins) { if (mixin.equals(existing)) { skip = true; break; } } if (!skip) { MixinNode[] newMixins = new MixinNode[mixins.length + 1]; System.arraycopy(mixins, 0, newMixins, 0, mixins.length); newMixins[mixins.length] = mixin; redirect().mixins = newMixins; } } /** * Finds a field matching the given name in this class. * * @param name the name of the field of interest * @return the method matching the given name and parameters or null */ public FieldNode getDeclaredField(String name) { if (redirect != null) return redirect().getDeclaredField(name); lazyClassInit(); return fieldIndex == null ? null : fieldIndex.get(name); } /** * Finds a field matching the given name in this class or a parent class. * * @param name the name of the field of interest * @return the method matching the given name and parameters or null */ public FieldNode getField(String name) { ClassNode node = this; while (node != null) { FieldNode fn = node.getDeclaredField(name); if (fn != null) return fn; node = node.getSuperClass(); } return null; } /** * @return the field node on the outer class or null if this is not an * inner class */ public FieldNode getOuterField(String name) { return null; } /** * Helper method to avoid casting to inner class */ public ClassNode getOuterClass() { return null; } /** * Adds a statement to the object initializer. * * @param statements the statement to be added */ public void addObjectInitializerStatements(Statement statements) { getObjectInitializerStatements().add(statements); } public List<Statement> getObjectInitializerStatements() { if (objectInitializers == null) objectInitializers = new LinkedList<Statement> (); return objectInitializers; } private MethodNode getOrAddStaticConstructorNode() { MethodNode method = null; List declaredMethods = getDeclaredMethods("<clinit>"); if (declaredMethods.isEmpty()) { method = addMethod("<clinit>", ACC_STATIC, ClassHelper.VOID_TYPE, Parameter.EMPTY_ARRAY, ClassNode.EMPTY_ARRAY, new BlockStatement()); method.setSynthetic(true); } else { method = (MethodNode) declaredMethods.get(0); } return method; } public void addStaticInitializerStatements(List<Statement> staticStatements, boolean fieldInit) { MethodNode method = getOrAddStaticConstructorNode(); BlockStatement block = null; Statement statement = method.getCode(); if (statement == null) { block = new BlockStatement(); } else if (statement instanceof BlockStatement) { block = (BlockStatement) statement; } else { block = new BlockStatement(); block.addStatement(statement); } // while anything inside a static initializer block is appended // we don't want to append in the case we have a initialization // expression of a static field. In that case we want to add // before the other statements if (!fieldInit) { block.addStatements(staticStatements); } else { List<Statement> blockStatements = block.getStatements(); staticStatements.addAll(blockStatements); blockStatements.clear(); blockStatements.addAll(staticStatements); } } public void positionStmtsAfterEnumInitStmts(List<Statement> staticFieldStatements) { MethodNode method = getOrAddStaticConstructorNode(); Statement statement = method.getCode(); if (statement instanceof BlockStatement) { BlockStatement block = (BlockStatement) statement; // add given statements for explicitly declared static fields just after enum-special fields // are found - the $VALUES binary expression marks the end of such fields. List<Statement> blockStatements = block.getStatements(); ListIterator<Statement> litr = blockStatements.listIterator(); while (litr.hasNext()) { Statement stmt = litr.next(); if (stmt instanceof ExpressionStatement && ((ExpressionStatement) stmt).getExpression() instanceof BinaryExpression) { BinaryExpression bExp = (BinaryExpression) ((ExpressionStatement) stmt).getExpression(); if (bExp.getLeftExpression() instanceof FieldExpression) { FieldExpression fExp = (FieldExpression) bExp.getLeftExpression(); if (fExp.getFieldName().equals("$VALUES")) { for (Statement tmpStmt : staticFieldStatements) { litr.add(tmpStmt); } } } } } } } /** * This methods returns a list of all methods of the given name * defined in the current class * @return the method list * @see #getMethods(String) */ public List<MethodNode> getDeclaredMethods(String name) { if (redirect!=null) return redirect().getDeclaredMethods(name); lazyClassInit(); return methods.getNotNull(name); } /** * This methods creates a list of all methods with this name of the * current class and of all super classes * @return the methods list * @see #getDeclaredMethods(String) */ public List<MethodNode> getMethods(String name) { List<MethodNode> answer = new ArrayList<MethodNode>(); ClassNode node = this; while (node != null) { answer.addAll(node.getDeclaredMethods(name)); node = node.getSuperClass(); } return answer; } /** * Finds a method matching the given name and parameters in this class. * * @return the method matching the given name and parameters or null */ public MethodNode getDeclaredMethod(String name, Parameter[] parameters) { for (MethodNode method : getDeclaredMethods(name)) { if (parametersEqual(method.getParameters(), parameters)) { return method; } } return null; } /** * Finds a method matching the given name and parameters in this class * or any parent class. * * @return the method matching the given name and parameters or null */ public MethodNode getMethod(String name, Parameter[] parameters) { for (MethodNode method : getMethods(name)) { if (parametersEqual(method.getParameters(), parameters)) { return method; } } return null; } /** * @param type the ClassNode of interest * @return true if this node is derived from the given ClassNode */ public boolean isDerivedFrom(ClassNode type) { if (this.equals(ClassHelper.VOID_TYPE)) { return type.equals(ClassHelper.VOID_TYPE); } if (type.equals(ClassHelper.OBJECT_TYPE)) return true; ClassNode node = this; while (node != null) { if (type.equals(node)) { return true; } node = node.getSuperClass(); } return false; } /** * @return true if this class is derived from a groovy object * i.e. it implements GroovyObject */ public boolean isDerivedFromGroovyObject() { return implementsInterface(ClassHelper.GROOVY_OBJECT_TYPE); } /** * @param classNode the class node for the interface * @return true if this class or any base class implements the given interface */ public boolean implementsInterface(ClassNode classNode) { ClassNode node = redirect(); do { if (node.declaresInterface(classNode)) { return true; } node = node.getSuperClass(); } while (node != null); return false; } /** * @param classNode the class node for the interface * @return true if this class declares that it implements the given interface * or if one of its interfaces extends directly or indirectly the interface * * NOTE: Doesn't consider an interface to implement itself. * I think this is intended to be called on ClassNodes representing * classes, not interfaces. * */ public boolean declaresInterface(ClassNode classNode) { ClassNode[] interfaces = redirect().getInterfaces(); for (ClassNode cn : interfaces) { if (cn.equals(classNode)) return true; } for (ClassNode cn : interfaces) { if (cn.declaresInterface(classNode)) return true; } return false; } /** * @return the ClassNode of the super class of this type */ public ClassNode getSuperClass() { if (!lazyInitDone && !isResolved()) { throw new GroovyBugError("ClassNode#getSuperClass for "+getName()+" called before class resolving"); } ClassNode sn = redirect().getUnresolvedSuperClass(); if (sn!=null) sn=sn.redirect(); return sn; } public ClassNode getUnresolvedSuperClass() { return getUnresolvedSuperClass(true); } public ClassNode getUnresolvedSuperClass(boolean useRedirect) { if (!useRedirect) return superClass; if (redirect != null) return redirect().getUnresolvedSuperClass(true); lazyClassInit(); return superClass; } public void setUnresolvedSuperClass(ClassNode sn) { superClass = sn; } public ClassNode [] getUnresolvedInterfaces() { return getUnresolvedInterfaces(true); } public ClassNode [] getUnresolvedInterfaces(boolean useRedirect) { if (!useRedirect) return interfaces; if (redirect != null) return redirect().getUnresolvedInterfaces(true); lazyClassInit(); return interfaces; } public CompileUnit getCompileUnit() { if (redirect!=null) return redirect().getCompileUnit(); if (compileUnit == null && module != null) { compileUnit = module.getUnit(); } return compileUnit; } protected void setCompileUnit(CompileUnit cu) { if (redirect!=null) redirect().setCompileUnit(cu); if (compileUnit!= null) compileUnit = cu; } /** * @return true if the two arrays are of the same size and have the same contents */ protected boolean parametersEqual(Parameter[] a, Parameter[] b) { return ParameterUtils.parametersEqual(a, b); } /** * @return the package name of this class */ public String getPackageName() { int idx = getName().lastIndexOf('.'); if (idx > 0) { return getName().substring(0, idx); } return null; } public String getNameWithoutPackage() { int idx = getName().lastIndexOf('.'); if (idx > 0) { return getName().substring(idx + 1); } return getName(); } public void visitContents(GroovyClassVisitor visitor) { // now let's visit the contents of the class for (PropertyNode pn : getProperties()) { visitor.visitProperty(pn); } for (FieldNode fn : getFields()) { visitor.visitField(fn); } for (ConstructorNode cn : getDeclaredConstructors()) { visitor.visitConstructor(cn); } for (MethodNode mn : getMethods()) { visitor.visitMethod(mn); } } public MethodNode getGetterMethod(String getterName) { return getGetterMethod(getterName, true); } public MethodNode getGetterMethod(String getterName, boolean searchSuperClasses) { MethodNode getterMethod = null; boolean booleanReturnOnly = getterName.startsWith("is"); for (MethodNode method : getDeclaredMethods(getterName)) { if (getterName.equals(method.getName()) && ClassHelper.VOID_TYPE!=method.getReturnType() && method.getParameters().length == 0 && (!booleanReturnOnly || ClassHelper.Boolean_TYPE.equals(ClassHelper.getWrapper(method.getReturnType())))) { // GROOVY-7363: There can be multiple matches for a getter returning a generic parameter type, due to // the generation of a bridge method. The real getter is really the non-bridge, non-synthetic one as it // has the most specific and exact return type of the two. Picking the bridge method results in loss of // type information, as it down-casts the return type to the lower bound of the generic parameter. if (getterMethod == null || getterMethod.isSynthetic()) { getterMethod = method; } } } if (getterMethod != null) return getterMethod; if (searchSuperClasses) { ClassNode parent = getSuperClass(); if (parent != null) return parent.getGetterMethod(getterName); } return null; } public MethodNode getSetterMethod(String setterName) { return getSetterMethod(setterName, true); } public MethodNode getSetterMethod(String setterName, boolean voidOnly) { for (MethodNode method : getDeclaredMethods(setterName)) { if (setterName.equals(method.getName()) && (!voidOnly || ClassHelper.VOID_TYPE==method.getReturnType()) && method.getParameters().length == 1) { return method; } } ClassNode parent = getSuperClass(); if (parent!=null) return parent.getSetterMethod(setterName, voidOnly); return null; } /** * Is this class declared in a static method (such as a closure / inner class declared in a static method) */ public boolean isStaticClass() { return redirect().staticClass; } public void setStaticClass(boolean staticClass) { redirect().staticClass = staticClass; } /** * @return Returns true if this inner class or closure was declared inside a script body */ public boolean isScriptBody() { return redirect().scriptBody; } public void setScriptBody(boolean scriptBody) { redirect().scriptBody = scriptBody; } public boolean isScript() { return redirect().script || isDerivedFrom(ClassHelper.SCRIPT_TYPE); } public void setScript(boolean script) { redirect().script = script; } public String toString() { return toString(true); } public String toString(boolean showRedirect) { if (isArray()) { return componentType.toString(showRedirect)+"[]"; } String ret = getName(); if (placeholder) ret = getUnresolvedName(); if (!placeholder && genericsTypes != null) { ret += " <"; for (int i = 0; i < genericsTypes.length; i++) { if (i != 0) ret += ", "; GenericsType genericsType = genericsTypes[i]; ret += genericTypeAsString(genericsType); } ret += ">"; } if (redirect != null && showRedirect) { ret += " -> " + redirect().toString(); } return ret; } /** * This exists to avoid a recursive definition of toString. The default toString * in GenericsType calls ClassNode.toString(), which calls GenericsType.toString(), etc. * @param genericsType * @return the string representing the generic type */ private String genericTypeAsString(GenericsType genericsType) { String ret = genericsType.getName(); if (genericsType.getUpperBounds() != null) { ret += " extends "; for (int i = 0; i < genericsType.getUpperBounds().length; i++) { ClassNode classNode = genericsType.getUpperBounds()[i]; if (classNode.equals(this)) { ret += classNode.getName(); } else { ret += classNode.toString(false); } if (i + 1 < genericsType.getUpperBounds().length) ret += " & "; } } else if (genericsType.getLowerBound() !=null) { ClassNode classNode = genericsType.getLowerBound(); if (classNode.equals(this)) { ret += " super " + classNode.getName(); } else { ret += " super " + classNode; } } return ret; } /** * Returns true if the given method has a possibly matching instance method with the given name and arguments. * * @param name the name of the method of interest * @param arguments the arguments to match against * @return true if a matching method was found */ public boolean hasPossibleMethod(String name, Expression arguments) { int count = 0; if (arguments instanceof TupleExpression) { TupleExpression tuple = (TupleExpression) arguments; // TODO this won't strictly be true when using list expansion in argument calls count = tuple.getExpressions().size(); } ClassNode node = this; do { for (MethodNode method : getMethods(name)) { if (method.getParameters().length == count && !method.isStatic()) { return true; } } node = node.getSuperClass(); } while (node != null); return false; } public MethodNode tryFindPossibleMethod(String name, Expression arguments) { int count = 0; if (arguments instanceof TupleExpression) { TupleExpression tuple = (TupleExpression) arguments; // TODO this won't strictly be true when using list expansion in argument calls count = tuple.getExpressions().size(); } else return null; MethodNode res = null; ClassNode node = this; TupleExpression args = (TupleExpression) arguments; do { for (MethodNode method : node.getMethods(name)) { if (method.getParameters().length == count) { boolean match = true; for (int i = 0; i != count; ++i) if (!args.getType().isDerivedFrom(method.getParameters()[i].getType())) { match = false; break; } if (match) { if (res == null) res = method; else { if (res.getParameters().length != count) return null; if (node.equals(this)) return null; match = true; for (int i = 0; i != count; ++i) if (!res.getParameters()[i].getType().equals(method.getParameters()[i].getType())) { match = false; break; } if (!match) return null; } } } } node = node.getSuperClass(); } while (node != null); return res; } /** * Returns true if the given method has a possibly matching static method with the given name and arguments. * * @param name the name of the method of interest * @param arguments the arguments to match against * @return true if a matching method was found */ public boolean hasPossibleStaticMethod(String name, Expression arguments) { return ClassNodeUtils.hasPossibleStaticMethod(this, name, arguments, false); } public boolean isInterface(){ return (getModifiers() & Opcodes.ACC_INTERFACE) > 0; } public boolean isAbstract(){ return (getModifiers() & Opcodes.ACC_ABSTRACT) > 0; } public boolean isResolved() { if (clazz != null) return true; if (redirect != null) return redirect.isResolved(); return componentType != null && componentType.isResolved(); } public boolean isArray(){ return componentType!=null; } public ClassNode getComponentType() { return componentType; } /** * Returns the concrete class this classnode relates to. However, this method * is inherently unsafe as it may return null depending on the compile phase you are * using. AST transformations should never use this method directly, but rather obtain * a new class node using {@link #getPlainNodeReference()}. * @return the class this classnode relates to. May return null. */ public Class getTypeClass(){ if (clazz != null) return clazz; if (redirect != null) return redirect.getTypeClass(); ClassNode component = redirect().componentType; if (component!=null && component.isResolved()){ return Array.newInstance(component.getTypeClass(), 0).getClass(); } throw new GroovyBugError("ClassNode#getTypeClass for "+getName()+" is called before the type class is set "); } public boolean hasPackageName(){ return redirect().name.indexOf('.')>0; } /** * Marks if the current class uses annotations or not * @param flag */ public void setAnnotated(boolean flag) { this.annotated = flag; } public boolean isAnnotated() { return this.annotated; } public GenericsType[] getGenericsTypes() { return genericsTypes; } public void setGenericsTypes(GenericsType[] genericsTypes) { usesGenerics = usesGenerics || genericsTypes!=null; this.genericsTypes = genericsTypes; } public void setGenericsPlaceHolder(boolean b) { usesGenerics = usesGenerics || b; placeholder = b; } public boolean isGenericsPlaceHolder() { return placeholder; } public boolean isUsingGenerics() { return usesGenerics; } public void setUsingGenerics(boolean b) { usesGenerics = b; } public ClassNode getPlainNodeReference() { if (ClassHelper.isPrimitiveType(this)) return this; ClassNode n = new ClassNode(name, modifiers, superClass,null,null); n.isPrimaryNode = false; n.setRedirect(redirect()); if (isArray()) { n.componentType = redirect().getComponentType(); } return n; } public boolean isAnnotationDefinition() { return redirect().isPrimaryNode && isInterface() && (getModifiers() & Opcodes.ACC_ANNOTATION)!=0; } public List<AnnotationNode> getAnnotations() { if (redirect!=null) return redirect.getAnnotations(); lazyClassInit(); return super.getAnnotations(); } public List<AnnotationNode> getAnnotations(ClassNode type) { if (redirect!=null) return redirect.getAnnotations(type); lazyClassInit(); return super.getAnnotations(type); } public void addTransform(Class<? extends ASTTransformation> transform, ASTNode node) { GroovyASTTransformation annotation = transform.getAnnotation(GroovyASTTransformation.class); if (annotation == null) return; Set<ASTNode> nodes = getTransformInstances().get(annotation.phase()).get(transform); if (nodes == null) { nodes = new LinkedHashSet<ASTNode>(); getTransformInstances().get(annotation.phase()).put(transform, nodes); } nodes.add(node); } public Map<Class <? extends ASTTransformation>, Set<ASTNode>> getTransforms(CompilePhase phase) { return getTransformInstances().get(phase); } public void renameField(String oldName, String newName) { ClassNode r = redirect (); if (r.fieldIndex == null) r.fieldIndex = new HashMap<String,FieldNode> (); final Map<String,FieldNode> index = r.fieldIndex; index.put(newName, index.remove(oldName)); } public void removeField(String oldName) { ClassNode r = redirect (); if (r.fieldIndex == null) r.fieldIndex = new HashMap<String,FieldNode> (); final Map<String,FieldNode> index = r.fieldIndex; r.fields.remove(index.get(oldName)); index.remove(oldName); } public boolean isEnum() { return (getModifiers()&Opcodes.ACC_ENUM) != 0; } /** * @return iterator of inner classes defined inside this one */ public Iterator<InnerClassNode> getInnerClasses() { return (innerClasses == null ? Collections.<InnerClassNode>emptyList() : innerClasses).iterator(); } private Map<CompilePhase, Map<Class<? extends ASTTransformation>, Set<ASTNode>>> getTransformInstances() { if(transformInstances == null){ transformInstances = new EnumMap<CompilePhase, Map<Class <? extends ASTTransformation>, Set<ASTNode>>>(CompilePhase.class); for (CompilePhase phase : CompilePhase.values()) { transformInstances.put(phase, new HashMap<Class <? extends ASTTransformation>, Set<ASTNode>>()); } } return transformInstances; } public boolean isRedirectNode() { return redirect!=null; } @Override public String getText() { return getName(); } }