/**
* Copyright (c) 2013 Oculus Info Inc.
* http://www.oculusinfo.com/
*
* Released under the MIT License.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do
* so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package spimedb.cluster.unsupervised;
import spimedb.cluster.DataSet;
import spimedb.cluster.Instance;
import spimedb.cluster.feature.spatial.GeoSpatialFeature;
import spimedb.cluster.feature.spatial.centroid.GeoSpatialCentroid;
import spimedb.cluster.feature.spatial.distance.HaversineDistance;
import spimedb.cluster.feature.string.StringFeature;
import spimedb.cluster.feature.string.centroid.StringMedianCentroid;
import spimedb.cluster.feature.string.distance.EditDistance;
import spimedb.cluster.unsupervised.cluster.Cluster;
import spimedb.cluster.unsupervised.cluster.ClusterResult;
import spimedb.cluster.unsupervised.cluster.kmeans.KMeans;
import java.util.Random;
public class TestNameLocationClustering {
public static void main(String[] args) {
DataSet ds = new DataSet();
String[] tokens = {"alpha", "bravo", "charlie", "delta", "echo", "foxtrot", "romeo", "sierra", "tango", "whiskey"};
Random rnd = new Random();
for (int i=0; i < 100000; i++) {
// create a new data instance
Instance inst = new Instance();
// add name feature to the instance
StringFeature name = new StringFeature("name");
name.setValue( tokens[rnd.nextInt(tokens.length)] + " " + tokens[rnd.nextInt(tokens.length)]);
inst.addFeature(name);
// add geo spatial feature to the instance
GeoSpatialFeature geo = new GeoSpatialFeature("location");
geo.setLatitude(rnd.nextDouble() * 180 - 90);
geo.setLongitude(rnd.nextDouble() * 360 - 180);
inst.addFeature(geo);
// add the instance to the dataset
ds.add(inst);
}
// create a k-means clusterer with k=4, 5 max iterations
KMeans clusterer = new KMeans(4, 5, false);
// register the name features distance function and centroid method using a weight of 1.0
clusterer.registerFeatureType(
"name",
StringMedianCentroid.class,
new EditDistance(1.0));
// register the location features distance function and centroid method using a weight of 1.0
clusterer.registerFeatureType(
"location",
GeoSpatialCentroid.class,
new HaversineDistance(1.0));
ClusterResult clusters = clusterer.doCluster(ds);
for (Cluster c : clusters) {
System.out.println(c.toString(false));
}
clusterer.terminate();
}
}