/* * __ .__ .__ ._____. * _/ |_ _______ __|__| ____ | | |__\_ |__ ______ * \ __\/ _ \ \/ / |/ ___\| | | || __ \ / ___/ * | | ( <_> > <| \ \___| |_| || \_\ \\___ \ * |__| \____/__/\_ \__|\___ >____/__||___ /____ > * \/ \/ \/ \/ * * Copyright (c) 2006-2011 Karsten Schmidt * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * http://creativecommons.org/licenses/LGPL/2.1/ * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ package spimedb.util.math.noise; /** * Simplex Noise in 2D, 3D and 4D. Based on the example code of this paper: * http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf * * @author Stefan Gustavson, Linkping University, Sweden (stegu at itn dot liu * dot se) * @author Karsten Schmidt (slight optimizations & restructuring) */ public class SimplexNoise { private static final double SQRT3 = Math.sqrt(3.0); private static final double SQRT5 = Math.sqrt(5.0); /** * Skewing and unskewing factors for 2D, 3D and 4D, some of them * pre-multiplied. */ private static final double F2 = 0.5 * (SQRT3 - 1.0); private static final double G2 = (3.0 - SQRT3) / 6.0; private static final double G22 = G2 * 2.0 - 1; private static final double F3 = 1.0 / 3.0; private static final double G3 = 1.0 / 6.0; private static final double F4 = (SQRT5 - 1.0) / 4.0; private static final double G4 = (5.0 - SQRT5) / 20.0; private static final double G42 = G4 * 2.0; private static final double G43 = G4 * 3.0; private static final double G44 = G4 * 4.0 - 1.0; /** * Gradient vectors for 3D (pointing to mid points of all edges of a unit * cube) */ private static final int[][] grad3 = { { 1, 1, 0 }, { -1, 1, 0 }, { 1, -1, 0 }, { -1, -1, 0 }, { 1, 0, 1 }, { -1, 0, 1 }, { 1, 0, -1 }, { -1, 0, -1 }, { 0, 1, 1 }, { 0, -1, 1 }, { 0, 1, -1 }, { 0, -1, -1 } }; /** * Gradient vectors for 4D (pointing to mid points of all edges of a unit 4D * hypercube) */ private static final int[][] grad4 = { { 0, 1, 1, 1 }, { 0, 1, 1, -1 }, { 0, 1, -1, 1 }, { 0, 1, -1, -1 }, { 0, -1, 1, 1 }, { 0, -1, 1, -1 }, { 0, -1, -1, 1 }, { 0, -1, -1, -1 }, { 1, 0, 1, 1 }, { 1, 0, 1, -1 }, { 1, 0, -1, 1 }, { 1, 0, -1, -1 }, { -1, 0, 1, 1 }, { -1, 0, 1, -1 }, { -1, 0, -1, 1 }, { -1, 0, -1, -1 }, { 1, 1, 0, 1 }, { 1, 1, 0, -1 }, { 1, -1, 0, 1 }, { 1, -1, 0, -1 }, { -1, 1, 0, 1 }, { -1, 1, 0, -1 }, { -1, -1, 0, 1 }, { -1, -1, 0, -1 }, { 1, 1, 1, 0 }, { 1, 1, -1, 0 }, { 1, -1, 1, 0 }, { 1, -1, -1, 0 }, { -1, 1, 1, 0 }, { -1, 1, -1, 0 }, { -1, -1, 1, 0 }, { -1, -1, -1, 0 } }; /** * Permutation table */ private static final int[] p = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 }; /** * To remove the need for index wrapping, double the permutation table * length */ private static final int[] perm = new int[0x200]; /** * A lookup table to traverse the simplex around a given point in 4D. * Details can be found where this table is used, in the 4D noise method. */ private static final int[][] simplex = { { 0, 1, 2, 3 }, { 0, 1, 3, 2 }, { 0, 0, 0, 0 }, { 0, 2, 3, 1 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 1, 2, 3, 0 }, { 0, 2, 1, 3 }, { 0, 0, 0, 0 }, { 0, 3, 1, 2 }, { 0, 3, 2, 1 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 1, 3, 2, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 1, 2, 0, 3 }, { 0, 0, 0, 0 }, { 1, 3, 0, 2 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 2, 3, 0, 1 }, { 2, 3, 1, 0 }, { 1, 0, 2, 3 }, { 1, 0, 3, 2 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 2, 0, 3, 1 }, { 0, 0, 0, 0 }, { 2, 1, 3, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 2, 0, 1, 3 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 3, 0, 1, 2 }, { 3, 0, 2, 1 }, { 0, 0, 0, 0 }, { 3, 1, 2, 0 }, { 2, 1, 0, 3 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 3, 1, 0, 2 }, { 0, 0, 0, 0 }, { 3, 2, 0, 1 }, { 3, 2, 1, 0 } }; static { for (int i = 0; i < 0x200; i++) { perm[i] = p[i & 0xff]; } } /** * Computes dot product in 2D. * * @param g * 2-vector (grid offset) * @param x * @param y * @return dot product */ private static double dot(int g[], double x, double y) { return g[0] * x + g[1] * y; } /** * Computes dot product in 3D. * * @param g * 3-vector (grid offset) * @param x * @param y * @param z * @return dot product */ private static double dot(int g[], double x, double y, double z) { return g[0] * x + g[1] * y + g[2] * z; } /** * Computes dot product in 4D. * * @param g * 4-vector (grid offset) * @param x * @param y * @param z * @param w * @return dot product */ private static double dot(int g[], double x, double y, double z, double w) { return g[0] * x + g[1] * y + g[2] * z + g[3] * w; } /** * This method is a *lot* faster than using (int)Math.floor(x). * * @param x * value to be floored * @return */ private static int fastfloor(double x) { return x >= 0 ? (int) x : (int) x - 1; } /** * Computes 2D Simplex Noise. * * @param x * coordinate * @param y * coordinate * @return noise value in range -1 ... +1. */ public static double noise(double x, double y) { double n0 = 0, n1 = 0, n2 = 0; // Noise contributions from the three // corners // Skew the input space to determine which simplex cell we're in double s = (x + y) * F2; // Hairy factor for 2D int i = fastfloor(x + s); int j = fastfloor(y + s); double t = (i + j) * G2; double x0 = x - (i - t); // The x,y distances from the cell origin double y0 = y - (j - t); // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed double y1 = y0 - j1 + G2; double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed double y2 = y0 + G22; // Work out the hashed gradient indices of the three simplex corners int ii = i & 0xff; int jj = j & 0xff; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 > 0) { t0 *= t0; int gi0 = perm[ii + perm[jj]] % 12; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for // 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 > 0) { t1 *= t1; int gi1 = perm[ii + i1 + perm[jj + j1]] % 12; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 > 0) { t2 *= t2; int gi2 = perm[ii + 1 + perm[jj + 1]] % 12; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); } /** * Computes 3D Simplex Noise. * * @param x * coordinate * @param y * coordinate * @param z * coordinate * @return noise value in range -1 ... +1 */ public static double noise(double x, double y, double z) { double n0 = 0, n1 = 0, n2 = 0, n3 = 0; // Noise contributions from the // four corners // Skew the input space to determine which simplex cell we're in // final double F3 = 1.0 / 3.0; double s = (x + y + z) * F3; // Very nice and simple skew factor // for 3D int i = fastfloor(x + s); int j = fastfloor(y + s); int k = fastfloor(z + s); // final double G3 = 1.0 / 6.0; // Very nice and simple unskew factor, // too double t = (i + j + k) * G3; double x0 = x - (i - t); // The x,y,z distances from the cell origin double y0 = y - (j - t); double z0 = z - (k - t); // For the 3D case, the simplex shape is a slightly irregular // tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) // coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), // and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), // where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + F3; // Offsets for third corner in (x,y,z) double y2 = y0 - j2 + F3; double z2 = z0 - k2 + F3; double x3 = x0 - 0.5; // Offsets for last corner in (x,y,z) double y3 = y0 - 0.5; double z3 = z0 - 0.5; // Work out the hashed gradient indices of the four simplex corners int ii = i & 0xff; int jj = j & 0xff; int kk = k & 0xff; // Calculate the contribution from the four corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 > 0) { t0 *= t0; int gi0 = perm[ii + perm[jj + perm[kk]]] % 12; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 > 0) { t1 *= t1; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 > 0) { t2 *= t2; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 > 0) { t3 *= t3; int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0 * (n0 + n1 + n2 + n3); } /** * Computes 4D Simplex Noise. * * @param x * coordinate * @param y * coordinate * @param z * coordinate * @param w * coordinate * @return noise value in range -1 ... +1 */ public static double noise(double x, double y, double z, double w) { // The skewing and unskewing factors are hairy again for the 4D case double n0 = 0, n1 = 0, n2 = 0, n3 = 0, n4 = 0; // Noise contributions // from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices double s = (x + y + z + w) * F4; // Factor for 4D skewing int i = fastfloor(x + s); int j = fastfloor(y + s); int k = fastfloor(z + s); int l = fastfloor(w + s); double t = (i + j + k + l) * G4; // Factor for 4D unskewing double x0 = x - (i - t); // The x,y,z,w distances from the cell origin double y0 = y - (j - t); double z0 = z - (k - t); double w0 = w - (l - t); // For the 4D case, the simplex is a 4D shape I won't even try to // describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // The method below is a good way of finding the ordering of x,y,z,w and // then find the correct traversal order for the simplex were in. // First, six pair-wise comparisons are performed between each possible // pair of the four coordinates, and the results are used to add up // binary bits for an integer index. int c = 0; if (x0 > y0) { c = 0x20; } if (x0 > z0) { c |= 0x10; } if (y0 > z0) { c |= 0x08; } if (x0 > w0) { c |= 0x04; } if (y0 > w0) { c |= 0x02; } if (z0 > w0) { c |= 0x01; } int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some // order. Many values of c will never occur, since e.g. x>y>z>w makes // x<z, y<w and x<w impossible. Only the 24 indices which have non-zero // entries make any sense. We use a thresholding to set the coordinates // in turn from the largest magnitude. The number 3 in the "simplex" // array is at the position of the largest coordinate. int[] sc = simplex[c]; i1 = sc[0] >= 3 ? 1 : 0; j1 = sc[1] >= 3 ? 1 : 0; k1 = sc[2] >= 3 ? 1 : 0; l1 = sc[3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest // coordinate. i2 = sc[0] >= 2 ? 1 : 0; j2 = sc[1] >= 2 ? 1 : 0; k2 = sc[2] >= 2 ? 1 : 0; l2 = sc[3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest // coordinate. i3 = sc[0] >= 1 ? 1 : 0; j3 = sc[1] >= 1 ? 1 : 0; k3 = sc[2] >= 1 ? 1 : 0; l3 = sc[3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look // that up. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + G42; // Offsets for third corner in (x,y,z,w) double y2 = y0 - j2 + G42; double z2 = z0 - k2 + G42; double w2 = w0 - l2 + G42; double x3 = x0 - i3 + G43; // Offsets for fourth corner in (x,y,z,w) double y3 = y0 - j3 + G43; double z3 = z0 - k3 + G43; double w3 = w0 - l3 + G43; double x4 = x0 + G44; // Offsets for last corner in (x,y,z,w) double y4 = y0 + G44; double z4 = z0 + G44; double w4 = w0 + G44; // Work out the hashed gradient indices of the five simplex corners int ii = i & 0xff; int jj = j & 0xff; int kk = k & 0xff; int ll = l & 0xff; // Calculate the contribution from the five corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 > 0) { t0 *= t0; int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 > 0) { t1 *= t1; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 > 0) { t2 *= t2; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 > 0) { t3 *= t3; int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 > 0) { t4 *= t4; int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); } }