/** * Copyright (c) 2013 Oculus Info Inc. * http://www.oculusinfo.com/ * * Released under the MIT License. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ package spimedb.util.math.statistics; public class StatTracker { private int _n; private double _sumX; private double _sumXSquared; private double _min; private double _max; public StatTracker () { reset(); } public void reset () { _n = 0; _sumX = 0; _sumXSquared = 0; _min = Double.NaN; _max = Double.NaN; } public void addStat (double value) { ++_n; _sumX += value; _sumXSquared += value*value; if (Double.isNaN(_min) || value < _min) _min = value; if (Double.isNaN(_max) || value > _max) _max = value; } public int numItems () { return _n; } public double mean () { return _sumX/_n; } public double max () { return _max; } public double min () { return _min; } /** * Normalize a value to fit in the range we've tracked * * @return 0 if <code>value</code> is at the minimum tracked, 1 if at the * max, linear interpolations thereof for other values, and NaN if * no values have been tracked */ public double normalizeValue (double value) { if (1 > _n) return 0.0; if (1 == _n) { if (value == _min) return 1.0; else return 0.0; } return (value-_min)/(_max-_min); } public double variance () { double mean = mean(); return _sumXSquared/_n - mean*mean; } public double standardDeviation () { return Math.sqrt(variance()); } }