/* * #%L * Fork of JAI Image I/O Tools. * %% * Copyright (C) 2008 - 2014 Open Microscopy Environment: * - Board of Regents of the University of Wisconsin-Madison * - Glencoe Software, Inc. * - University of Dundee * %% * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of any organization. * #L% */ /* * $RCSfile: RectROIMaskGenerator.java,v $ * $Revision: 1.1 $ * $Date: 2005/02/11 05:02:23 $ * $State: Exp $ * * Class: RectROIMaskGenerator * * Description: Generates masks when only rectangular ROIs exist * * * * COPYRIGHT: * * This software module was originally developed by Raphaël Grosbois and * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research * Centre France S.A) in the course of development of the JPEG2000 * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This * software module is an implementation of a part of the JPEG 2000 * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio * Systems AB and Canon Research Centre France S.A (collectively JJ2000 * Partners) agree not to assert against ISO/IEC and users of the JPEG * 2000 Standard (Users) any of their rights under the copyright, not * including other intellectual property rights, for this software module * with respect to the usage by ISO/IEC and Users of this software module * or modifications thereof for use in hardware or software products * claiming conformance to the JPEG 2000 Standard. Those intending to use * this software module in hardware or software products are advised that * their use may infringe existing patents. The original developers of * this software module, JJ2000 Partners and ISO/IEC assume no liability * for use of this software module or modifications thereof. No license * or right to this software module is granted for non JPEG 2000 Standard * conforming products. JJ2000 Partners have full right to use this * software module for his/her own purpose, assign or donate this * software module to any third party and to inhibit third parties from * using this software module for non JPEG 2000 Standard conforming * products. This copyright notice must be included in all copies or * derivative works of this software module. * * Copyright (c) 1999/2000 JJ2000 Partners. * */ package jj2000.j2k.roi.encoder; import jj2000.j2k.codestream.writer.*; import jj2000.j2k.wavelet.analysis.*; import jj2000.j2k.quantization.*; import jj2000.j2k.wavelet.*; import jj2000.j2k.image.*; import jj2000.j2k.util.*; import jj2000.j2k.roi.*; import jj2000.j2k.roi.*; /** * This class generates the ROI masks when there are only rectangular ROIs in * the image. The ROI mask generation can then be simplified by only * calculating the boundaries of the ROI mask in the particular subbands * * <P>The values are calculated from the scaling factors of the ROIs. The * values with which to scale are equal to u-umin where umin is the lowest * scaling factor within the block. The umin value is sent to the entropy * coder to be used for scaling the distortion values. * * <P> To generate and to store the boundaries of the ROIs, the class * SubbandRectROIMask is used. There is one tree of SubbandMasks for each * component. * * @see SubbandRectROIMask * * @see ROIMaskGenerator * * @see ArbROIMaskGenerator * */ public class RectROIMaskGenerator extends ROIMaskGenerator{ /** The upper left xs of the ROIs*/ private int[] ulxs; /** The upper left ys of the ROIs*/ private int[] ulys; /** The lower right xs of the ROIs*/ private int[] lrxs; /** The lower right ys of the ROIs*/ private int[] lrys; /** Number of ROIs */ private int nrROIs[]; /** The tree of subbandmask. One for each component */ private SubbandRectROIMask[] sMasks; /** * The constructor of the mask generator. The constructor is called with * the ROI data. This data is stored in arrays that are used to generate * the SubbandRectROIMask trees for each component. * * @param ROIs The ROI info. * * @param maxShift The flag indicating use of Maxshift method. * * @param nrc number of components. * */ public RectROIMaskGenerator(ROI[] ROIs, int nrc){ super(ROIs, nrc); int nr=ROIs.length; int r,c; nrROIs=new int[nrc]; sMasks=new SubbandRectROIMask[nrc]; // Count number of ROIs per component for(r=nr-1;r>=0;r--){ nrROIs[ROIs[r].comp]++; } } /** * This functions gets a DataBlk the size of the current code-block and * fills this block with the ROI mask. * * <P> In order to get the mask for a particular Subband, the subband tree * is traversed and at each decomposition, the ROI masks are computed. The * roi bondaries for each subband are stored in the SubbandRectROIMask * tree. * * @param db The data block that is to be filled with the mask * * @param sb The root of the subband tree to which db belongs * * @param magbits The max number of magnitude bits in any code-block * * @param c The component for which to get the mask * * @return Whether or not a mask was needed for this tile * */ public boolean getROIMask(DataBlkInt db, Subband sb, int magbits, int c){ int x = db.ulx; int y = db.uly; int w = db.w; int h = db.h; int[] mask = db.getDataInt(); int i,j,k,r,mink,minj,maxk,maxj; int ulx=0,uly=0,lrx=0,lry=0; int wrap; int maxROI; int[] culxs; int[] culys; int[] clrxs; int[] clrys; SubbandRectROIMask srm; // If the ROI bounds have not been calculated for this tile and // component, do so now. if(!tileMaskMade[c]){ makeMask(sb,magbits,c); tileMaskMade[c] = true; } if(!roiInTile) { return false; } // Find relevant subband mask and get ROI bounds srm = (SubbandRectROIMask)sMasks[c].getSubbandRectROIMask(x,y); culxs = srm.ulxs; culys = srm.ulys; clrxs = srm.lrxs; clrys = srm.lrys; maxROI = culxs.length-1; // Make sure that only parts of ROIs within the code-block are used // and make the bounds local to this block the LR bounds are counted // as the distance from the lower right corner of the block x -= srm.ulx; y -= srm.uly; for(r=maxROI; r>=0; r--){ ulx = culxs[r]-x; if(ulx<0) { ulx = 0; } else if(ulx>=w) { ulx = w; } uly = culys[r]-y; if(uly<0) { uly = 0; } else if(uly>=h) { uly = h; } lrx = clrxs[r]-x; if(lrx<0) { lrx = -1; } else if(lrx>=w) { lrx = w-1; } lry = clrys[r]-y; if(lry<0) { lry = -1; } else if(lry>=h) { lry = h-1; } // Add the masks of the ROI i = w*lry+lrx; maxj = (lrx-ulx); wrap = w-maxj-1; maxk = lry-uly; for(k=maxk; k>=0; k--){ for(j=maxj;j>=0;j--,i--) mask[i] = magbits; i-=wrap; } } return true; } /** * This function returns the relevant data of the mask generator * */ public String toString(){ return("Fast rectangular ROI mask generator"); } /** * This function generates the ROI mask for the entire tile. The mask is * generated for one component. This method is called once for each tile * and component. * * @param sb The root of the subband tree used in the decomposition * * @param n component number * */ public void makeMask(Subband sb, int magbits, int n){ int nr = nrROIs[n]; int r; int ulx,uly,lrx,lry; int tileulx = sb.ulcx; int tileuly = sb.ulcy; int tilew = sb.w; int tileh = sb.h; ROI[] ROIs=rois; // local copy ulxs = new int[nr]; ulys = new int[nr]; lrxs = new int[nr]; lrys = new int[nr]; nr=0; for(r=ROIs.length-1;r>=0;r--){ if(ROIs[r].comp==n){ ulx = ROIs[r].ulx; uly = ROIs[r].uly; lrx = ROIs[r].w+ulx-1; lry = ROIs[r].h+uly-1; if( ulx > (tileulx + tilew -1 ) || uly > (tileuly + tileh -1 ) || lrx < tileulx || lry < tileuly ) // no part of ROI in tile continue; // Check bounds ulx -= tileulx; lrx -= tileulx; uly -= tileuly; lry -= tileuly; ulx = (ulx<0) ? 0 : ulx; uly = (uly<0) ? 0 : uly; lrx = (lrx > (tilew-1)) ? tilew-1 : lrx; lry = (lry > (tileh-1)) ? tileh-1 : lry; ulxs[nr] = ulx; ulys[nr] = uly; lrxs[nr] = lrx; lrys[nr] = lry; nr++; } } if(nr==0) { roiInTile=false; } else { roiInTile=true; } sMasks[n]=new SubbandRectROIMask(sb,ulxs,ulys,lrxs,lrys,nr); } }