/* * #%L * Fork of JAI Image I/O Tools. * %% * Copyright (C) 2008 - 2014 Open Microscopy Environment: * - Board of Regents of the University of Wisconsin-Madison * - Glencoe Software, Inc. * - University of Dundee * %% * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of any organization. * #L% */ /* * $RCSfile: StdQuantizer.java,v $ * $Revision: 1.1 $ * $Date: 2005/02/11 05:02:20 $ * $State: Exp $ * * Class: StdQuantizer * * Description: Scalar deadzone quantizer of integer or float * data. * * Mergerd from StdQuantizerInt and * StdQuantizerFloat from Joel Askelof. * * * COPYRIGHT: * * This software module was originally developed by Raphaël Grosbois and * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research * Centre France S.A) in the course of development of the JPEG2000 * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This * software module is an implementation of a part of the JPEG 2000 * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio * Systems AB and Canon Research Centre France S.A (collectively JJ2000 * Partners) agree not to assert against ISO/IEC and users of the JPEG * 2000 Standard (Users) any of their rights under the copyright, not * including other intellectual property rights, for this software module * with respect to the usage by ISO/IEC and Users of this software module * or modifications thereof for use in hardware or software products * claiming conformance to the JPEG 2000 Standard. Those intending to use * this software module in hardware or software products are advised that * their use may infringe existing patents. The original developers of * this software module, JJ2000 Partners and ISO/IEC assume no liability * for use of this software module or modifications thereof. No license * or right to this software module is granted for non JPEG 2000 Standard * conforming products. JJ2000 Partners have full right to use this * software module for his/her own purpose, assign or donate this * software module to any third party and to inhibit third parties from * using this software module for non JPEG 2000 Standard conforming * products. This copyright notice must be included in all copies or * derivative works of this software module. * * Copyright (c) 1999/2000 JJ2000 Partners. * */ package jj2000.j2k.quantization.quantizer; import jj2000.j2k.codestream.writer.*; import jj2000.j2k.wavelet.analysis.*; import jj2000.j2k.quantization.*; import jj2000.j2k.wavelet.*; import jj2000.j2k.image.*; import jj2000.j2k.*; import com.sun.media.imageioimpl.plugins.jpeg2000.J2KImageWriteParamJava; /** * This class implements scalar quantization of integer or floating-point * valued source data. The source data is the wavelet transformed image data * and the output is the quantized wavelet coefficients represented in * sign-magnitude (see below). * * <P>Sign magnitude representation is used (instead of two's complement) for * the output data. The most significant bit is used for the sign (0 if * positive, 1 if negative). Then the magnitude of the quantized coefficient * is stored in the next M most significat bits. The rest of the bits (least * significant bits) can contain a fractional value of the quantized * coefficient. This fractional value is not to be coded by the entropy * coder. However, it can be used to compute rate-distortion measures with * greater precision. * * <P>The value of M is determined for each subband as the sum of the number * of guard bits G and the nominal range of quantized wavelet coefficients in * the corresponding subband (Rq), minus 1: * * <P>M = G + Rq -1 * * <P>The value of G should be the same for all subbands. The value of Rq * depends on the quantization step size, the nominal range of the component * before the wavelet transform and the analysis gain of the subband (see * Subband). * * <P>The blocks of data that are requested should not cross subband * boundaries. * * @see Subband * * @see Quantizer * */ public class StdQuantizer extends Quantizer { /** The number of mantissa bits for the quantization steps */ public final static int QSTEP_MANTISSA_BITS = 11; /** The number of exponent bits for the quantization steps */ // NOTE: formulas in 'convertFromExpMantissa()' and // 'convertToExpMantissa()' methods do not support more than 5 bits. public final static int QSTEP_EXPONENT_BITS = 5; /** The maximum value of the mantissa for the quantization steps */ public final static int QSTEP_MAX_MANTISSA = (1<<QSTEP_MANTISSA_BITS)-1; /** The maximum value of the exponent for the quantization steps */ public final static int QSTEP_MAX_EXPONENT = (1<<QSTEP_EXPONENT_BITS)-1; /** Natural log of 2, used as a convenience variable */ private static double log2 = Math.log(2); /** The quantization type specifications */ private QuantTypeSpec qts; /** The quantization step size specifications */ private QuantStepSizeSpec qsss; /** The guard bits specifications */ private GuardBitsSpec gbs; /** The 'CBlkWTDataFloat' object used to request data, used when * quantizing floating-point data. */ // This variable makes the class thread unsafe, but it avoids allocating // new objects for code-block that is quantized. private CBlkWTDataFloat infblk; /** * Initializes the source of wavelet transform coefficients. The * constructor takes information on whether the quantizer is in * reversible, derived or expounded mode. If the quantizer is reversible * the value of 'derived' is ignored. If the source data is not integer * (int) then the quantizer can not be reversible. * * <P> After initializing member attributes, getAnSubbandTree is called for * all components setting the 'stepWMSE' for all subbands in the current * tile. * * @param src The source of wavelet transform coefficients. * * @param encSpec The encoder specifications * */ public StdQuantizer(CBlkWTDataSrc src,J2KImageWriteParamJava wp){ super(src); qts = wp.getQuantizationType(); qsss = wp.getQuantizationStep(); gbs = wp.getGuardBits(); } /** * Returns the quantization type spec object associated to the quantizer. * * @return The quantization type spec * */ public QuantTypeSpec getQuantTypeSpec(){ return qts; } /** * Returns the number of guard bits used by this quantizer in the given * tile-component. * * @param t Tile index * * @param c Component index * * @return The number of guard bits * */ public int getNumGuardBits(int t,int c){ return ((Integer)gbs.getTileCompVal(t,c)).intValue(); } /** * Returns true if the quantized data is reversible, for the specified * tile-component. For the quantized data to be reversible it is necessary * and sufficient that the quantization is reversible. * * @param t The tile to test for reversibility * * @param c The component to test for reversibility * * @return True if the quantized data is reversible, false if not. * */ public boolean isReversible(int t,int c){ return qts.isReversible(t,c); } /** * Returns true if given tile-component uses derived quantization step * sizes. * * @param t Tile index * * @param c Component index * * @return True if derived * */ public boolean isDerived(int t,int c){ return qts.isDerived(t,c); } /** * Returns the next code-block in the current tile for the specified * component, as a copy (see below). The order in which code-blocks are * returned is not specified. However each code-block is returned only * once and all code-blocks will be returned if the method is called 'N' * times, where 'N' is the number of code-blocks in the tile. After all * the code-blocks have been returned for the current tile calls to this * method will return 'null'. * * <P>When changing the current tile (through 'setTile()' or 'nextTile()') * this method will always return the first code-block, as if this method * was never called before for the new current tile. * * <P>The data returned by this method is always a copy of the * data. Therfore it can be modified "in place" without any problems after * being returned. The 'offset' of the returned data is 0, and the 'scanw' * is the same as the code-block width. See the 'CBlkWTData' class. * * <P>The 'ulx' and 'uly' members of the returned 'CBlkWTData' object * contain the coordinates of the top-left corner of the block, with * respect to the tile, not the subband. * * @param c The component for which to return the next code-block. * * @param cblk If non-null this object will be used to return the new * code-block. If null a new one will be allocated and returned. If the * "data" array of the object is non-null it will be reused, if possible, * to return the data. * * @return The next code-block in the current tile for component 'n', or * null if all code-blocks for the current tile have been returned. * * @see CBlkWTData * */ public CBlkWTData getNextCodeBlock(int c,CBlkWTData cblk) { return getNextInternCodeBlock(c,cblk); } /** * Returns the next code-block in the current tile for the specified * component. The order in which code-blocks are returned is not * specified. However each code-block is returned only once and all * code-blocks will be returned if the method is called 'N' times, where * 'N' is the number of code-blocks in the tile. After all the code-blocks * have been returned for the current tile calls to this method will * return 'null'. * * <P>When changing the current tile (through 'setTile()' or 'nextTile()') * this method will always return the first code-block, as if this method * was never called before for the new current tile. * * <P>The data returned by this method can be the data in the internal * buffer of this object, if any, and thus can not be modified by the * caller. The 'offset' and 'scanw' of the returned data can be * arbitrary. See the 'CBlkWTData' class. * * <P>The 'ulx' and 'uly' members of the returned 'CBlkWTData' object * contain the coordinates of the top-left corner of the block, with * respect to the tile, not the subband. * * @param c The component for which to return the next code-block. * * @param cblk If non-null this object will be used to return the new * code-block. If null a new one will be allocated and returned. If the * "data" array of the object is non-null it will be reused, if possible, * to return the data. * * @return The next code-block in the current tile for component 'n', or * null if all code-blocks for the current tile have been returned. * * @see CBlkWTData * */ public final CBlkWTData getNextInternCodeBlock(int c, CBlkWTData cblk) { // NOTE: this method is declared final since getNextCodeBlock() relies // on this particular implementation int k,j; int tmp,shiftBits,jmin; int w,h; int outarr[]; float infarr[] = null; CBlkWTDataFloat infblk; float invstep; // The inverse of the quantization step size boolean intq; // flag for quantizig ints SubbandAn sb; float stepUDR; // The quantization step size (for a dynamic // range of 1, or unit) int g = ((Integer)gbs.getTileCompVal(tIdx,c)).intValue(); // Are we quantizing ints or floats? intq = (src.getDataType(tIdx,c) == DataBlk.TYPE_INT); // Check that we have an output object if (cblk == null) { cblk = new CBlkWTDataInt(); } // Cache input float code-block infblk = this.infblk; // Get data to quantize. When quantizing int data 'cblk' is used to // get the data to quantize and to return the quantized data as well, // that's why 'getNextCodeBlock()' is used. This can not be done when // quantizing float data because of the different data types, that's // why 'getNextInternCodeBlock()' is used in that case. if (intq) { // Source data is int cblk = src.getNextCodeBlock(c,cblk); if (cblk == null) { return null; // No more code-blocks in current tile for comp. } // Input and output arrays are the same (for "in place" quant.) outarr = (int[])cblk.getData(); } else { // Source data is float // Can not use 'cblk' to get float data, use 'infblk' infblk = (CBlkWTDataFloat) src.getNextInternCodeBlock(c,infblk); if (infblk == null) { // Release buffer from infblk: this enables to garbage collect // the big buffer when we are done with last code-block of // component. this.infblk.setData(null); return null; // No more code-blocks in current tile for comp. } this.infblk = infblk; // Save local cache infarr = (float[])infblk.getData(); // Get output data array and check that there is memory to put the // quantized coeffs in outarr = (int[]) cblk.getData(); if (outarr == null || outarr.length < infblk.w*infblk.h) { outarr = new int[infblk.w*infblk.h]; cblk.setData(outarr); } cblk.m = infblk.m; cblk.n = infblk.n; cblk.sb = infblk.sb; cblk.ulx = infblk.ulx; cblk.uly = infblk.uly; cblk.w = infblk.w; cblk.h = infblk.h; cblk.wmseScaling = infblk.wmseScaling; cblk.offset = 0; cblk.scanw = cblk.w; } // Cache width, height and subband of code-block w = cblk.w; h = cblk.h; sb = cblk.sb; if(isReversible(tIdx,c)) { // Reversible only for int data cblk.magbits = g-1+src.getNomRangeBits(c)+sb.anGainExp; shiftBits = 31-cblk.magbits; // Update the convertFactor field cblk.convertFactor = (1<<shiftBits); // Since we used getNextCodeBlock() to get the int data then // 'offset' is 0 and 'scanw' is the width of the code-block The // input and output arrays are the same (i.e. "in place") for(j=w*h-1; j>=0; j--){ tmp = (outarr[j]<<shiftBits); outarr[j] = ((tmp < 0) ? (1<<31)|(-tmp) : tmp); } } else{ // Non-reversible, use step size float baseStep = ((Float)qsss.getTileCompVal(tIdx,c)).floatValue(); // Calculate magnitude bits and quantization step size if(isDerived(tIdx,c)){ cblk.magbits = g-1+sb.level- (int)Math.floor(Math.log(baseStep)/log2); stepUDR = baseStep/(1<<sb.level); } else{ cblk.magbits = g-1-(int)Math.floor(Math.log(baseStep/ (sb.l2Norm*(1<<sb.anGainExp)))/ log2); stepUDR = baseStep/(sb.l2Norm*(1<<sb.anGainExp)); } shiftBits = 31-cblk.magbits; // Calculate step that decoder will get and use that one. stepUDR = convertFromExpMantissa(convertToExpMantissa(stepUDR)); invstep = 1.0f/((1L<<(src.getNomRangeBits(c)+sb.anGainExp))* stepUDR); // Normalize to magnitude bits (output fractional point) invstep *= (1<<(shiftBits-src.getFixedPoint(c))); // Update convertFactor and stepSize fields cblk.convertFactor = invstep; cblk.stepSize = ((1L<<(src.getNomRangeBits(c)+sb.anGainExp))* stepUDR); if(intq){ // Quantizing int data // Since we used getNextCodeBlock() to get the int data then // 'offset' is 0 and 'scanw' is the width of the code-block // The input and output arrays are the same (i.e. "in place") for (j=w*h-1; j>=0; j--) { tmp = (int)(outarr[j]*invstep); outarr[j] = ((tmp < 0) ? (1<<31)|(-tmp) : tmp); } } else { // Quantizing float data for (j=w*h-1, k = infblk.offset+(h-1)*infblk.scanw+w-1, jmin = w*(h-1); j>=0; jmin -= w) { for (; j>=jmin; k--, j--) { tmp = (int)(infarr[k]*invstep); outarr[j] = ((tmp < 0) ? (1<<31)|(-tmp) : tmp); } // Jump to beggining of previous line in input k -= infblk.scanw - w; } } } // Return the quantized code-block return cblk; } /** * Calculates the parameters of the SubbandAn objects that depend on the * Quantizer. The 'stepWMSE' field is calculated for each subband which is * a leaf in the tree rooted at 'sb', for the specified component. The * subband tree 'sb' must be the one for the component 'n'. * * @param sb The root of the subband tree. * * @param c The component index * * @see SubbandAn#stepWMSE * */ protected void calcSbParams(SubbandAn sb,int c){ float baseStep; if(sb.stepWMSE>0f) // parameters already calculated return; if(!sb.isNode){ if(isReversible(tIdx,c)){ sb.stepWMSE = (float) Math.pow(2,-(src.getNomRangeBits(c)<<1))* sb.l2Norm*sb.l2Norm; } else{ baseStep = ((Float)qsss.getTileCompVal(tIdx,c)).floatValue(); if(isDerived(tIdx,c)){ sb.stepWMSE = baseStep*baseStep* (float)Math.pow(2,(sb.anGainExp-sb.level)<<1)* sb.l2Norm*sb.l2Norm; } else{ sb.stepWMSE = baseStep*baseStep; } } } else{ calcSbParams((SubbandAn)sb.getLL(),c); calcSbParams((SubbandAn)sb.getHL(),c); calcSbParams((SubbandAn)sb.getLH(),c); calcSbParams((SubbandAn)sb.getHH(),c); sb.stepWMSE = 1f; // Signal that we already calculated this branch } } /** * Converts the floating point value to its exponent-mantissa * representation. The mantissa occupies the 11 least significant bits * (bits 10-0), and the exponent the previous 5 bits (bits 15-11). * * @param step The quantization step, normalized to a dynamic range of 1. * * @return The exponent mantissa representation of the step. * */ public static int convertToExpMantissa(float step) { int exp; exp = (int)Math.ceil(-Math.log(step)/log2); if (exp>QSTEP_MAX_EXPONENT) { // If step size is too small for exponent representation, use the // minimum, which is exponent QSTEP_MAX_EXPONENT and mantissa 0. return (QSTEP_MAX_EXPONENT<<QSTEP_MANTISSA_BITS); } // NOTE: this formula does not support more than 5 bits for the // exponent, otherwise (-1<<exp) might overflow (the - is used to be // able to represent 2**31) return (exp<<QSTEP_MANTISSA_BITS) | ((int)((-step*(-1<<exp)-1f)*(1<<QSTEP_MANTISSA_BITS)+0.5f)); } /** * Converts the exponent-mantissa representation to its floating-point * value. The mantissa occupies the 11 least significant bits (bits 10-0), * and the exponent the previous 5 bits (bits 15-11). * * @param ems The exponent-mantissa representation of the step. * * @return The floating point representation of the step, normalized to a * dynamic range of 1. * */ private static float convertFromExpMantissa(int ems) { // NOTE: this formula does not support more than 5 bits for the // exponent, otherwise (-1<<exp) might overflow (the - is used to be // able to represent 2**31) return (-1f-((float)(ems&QSTEP_MAX_MANTISSA)) / ((float)(1<<QSTEP_MANTISSA_BITS))) / (float)(-1<<((ems>>QSTEP_MANTISSA_BITS)&QSTEP_MAX_EXPONENT)); } /** * Returns the maximum number of magnitude bits in any subband of the * current tile. * * @param c the component number * * @return The maximum number of magnitude bits in all subbands of the * current tile. * */ public int getMaxMagBits(int c){ Subband sb = getAnSubbandTree(tIdx,c); if(isReversible(tIdx,c)){ return getMaxMagBitsRev(sb,c); } else{ if(isDerived(tIdx,c)){ return getMaxMagBitsDerived(sb,tIdx,c); } else { return getMaxMagBitsExpounded(sb,tIdx,c); } } } /** * Returns the maximum number of magnitude bits in any subband of the * current tile if reversible quantization is used * * @param sb The root of the subband tree of the current tile * * @param c the component number * * @return The highest number of magnitude bit-planes * */ private int getMaxMagBitsRev(Subband sb, int c){ int tmp,max=0; int g = ((Integer)gbs.getTileCompVal(tIdx,c)).intValue(); if(!sb.isNode) return g-1+src.getNomRangeBits(c)+sb.anGainExp; max=getMaxMagBitsRev(sb.getLL(),c); tmp=getMaxMagBitsRev(sb.getLH(),c); if(tmp>max) max=tmp; tmp=getMaxMagBitsRev(sb.getHL(),c); if(tmp>max) max=tmp; tmp=getMaxMagBitsRev(sb.getHH(),c); if(tmp>max) max=tmp; return max; } /** * Returns the maximum number of magnitude bits in any subband in the * given tile-component if derived quantization is used * * @param sb The root of the subband tree of the tile-component * * @param t Tile index * * @param c Component index * * @return The highest number of magnitude bit-planes * */ private int getMaxMagBitsDerived(Subband sb,int t,int c){ int tmp,max=0; int g = ((Integer)gbs.getTileCompVal(t,c)).intValue(); if(!sb.isNode){ float baseStep = ((Float)qsss.getTileCompVal(t,c)).floatValue(); return g-1+sb.level-(int)Math.floor(Math.log(baseStep)/log2); } max=getMaxMagBitsDerived(sb.getLL(),t,c); tmp=getMaxMagBitsDerived(sb.getLH(),t,c); if(tmp>max) max=tmp; tmp=getMaxMagBitsDerived(sb.getHL(),t,c); if(tmp>max) max=tmp; tmp=getMaxMagBitsDerived(sb.getHH(),t,c); if(tmp>max) max=tmp; return max; } /** * Returns the maximum number of magnitude bits in any subband in the * given tile-component if expounded quantization is used * * @param sb The root of the subband tree of the tile-component * * @param t Tile index * * @param c Component index * * @return The highest number of magnitude bit-planes * */ private int getMaxMagBitsExpounded(Subband sb,int t,int c){ int tmp,max=0; int g = ((Integer)gbs.getTileCompVal(t,c)).intValue(); if(!sb.isNode){ float baseStep = ((Float)qsss.getTileCompVal(t,c)).floatValue(); return g-1- (int)Math.floor(Math.log(baseStep/ (((SubbandAn)sb).l2Norm*(1<<sb.anGainExp)))/ log2); } max=getMaxMagBitsExpounded(sb.getLL(),t,c); tmp=getMaxMagBitsExpounded(sb.getLH(),t,c); if(tmp>max) max=tmp; tmp=getMaxMagBitsExpounded(sb.getHL(),t,c); if(tmp>max) max=tmp; tmp=getMaxMagBitsExpounded(sb.getHH(),t,c); if(tmp>max) max=tmp; return max; } }