/** * */ package fr.unistra.pelican.algorithms.frequential; import fr.unistra.pelican.Algorithm; import fr.unistra.pelican.AlgorithmException; import fr.unistra.pelican.DoubleImage; import fr.unistra.pelican.Image; /** * FFT and Inverse FFT - 2D - Based on 1D Radix algorithm * Can compute FFT of any length. * * Bands are processed independently. * TDim and ZDim are NOT supported. * * Computation is done in place, result is put in the input! * * If you have to compute FFT from images with same dimensions multiple times, save time by calling process() from the save Algorithm object. * * !!! FFT code was copied from a project under GPL license, only the interface with pelican image is new. * See comments of inner class ComplexDoubleFFT_Mixed for details... * * @author Benjamin Perret * */ public class FFT2 extends Algorithm { /** * Input image real part */ public DoubleImage inputImageRe; /** * Input image imaginary part, put null if no imaginary part */ public DoubleImage inputImageIm; /** * Output image real and imaginary part */ public DoubleImage [] outputImage; /** * Inverse FFT or not? */ public boolean inverse=false; private ComplexDoubleFFT_Mixed fft1=null; private int ysave=0; private ComplexDoubleFFT_Mixed fft2=null; private int xsave=0; public FFT2() { super.inputs="inputImageRe,inputImageIm"; super.options="inverse"; super.outputs="outputImage"; } /* (non-Javadoc) * @see fr.unistra.pelican.Algorithm#launch() */ @Override public void launch() throws AlgorithmException { if(inputImageRe == null) throw new AlgorithmException("FFT: inputImageRe is null!"); else if(inputImageIm!=null && !Image.haveSameDimensions(inputImageIm, inputImageRe)) throw new AlgorithmException("FFT: inputImageRe and inputImageIm must have same dimensions!"); if(fft1==null || ysave!=inputImageRe.ydim) fft1 = new ComplexDoubleFFT_Mixed(inputImageRe.ydim); if(fft2==null || xsave!=inputImageRe.xdim) fft2 = new ComplexDoubleFFT_Mixed(inputImageRe.xdim); DoubleImage [] res; if(inverse) {res= fft1.ifft(inputImageRe,inputImageIm,true); res= fft2.ifft(res[0],res[1],false); }else{res= fft1.fft(inputImageRe,inputImageIm,true); res= fft2.fft(res[0],res[1],false); } outputImage= res; } public static DoubleImage [] exec (DoubleImage inputImageRe, DoubleImage inputImageIm, boolean inverse) { return (DoubleImage[])(new FFT2()).process(inputImageRe,inputImageIm,inverse); } } class Factorize { /** Return the prime factors of n. * The method first extracts any factors in fromfactors, in order (which * needn't actually be prime). Remaining factors in increasing order follow. */ public static int[] factor (int n, int fromfactors[]){ int factors[] = new int[64]; // Cant be more than 64 factors. int nf = 0; int ntest = n; int factor; if (n <= 0) // Error case throw new Error("Number ("+n+") must be positive integer"); /* deal with the preferred factors first */ for(int i = 0; i < fromfactors.length && ntest != 1; i++){ factor = fromfactors[i]; while ((ntest % factor) == 0) { ntest /= factor; factors[nf++] = factor; }} /* deal with any other even prime factors (there is only one) */ factor = 2; while ((ntest % factor) == 0 && (ntest != 1)) { ntest /= factor; factors[nf++] = factor; } /* deal with any other odd prime factors */ factor = 3; while (ntest != 1) { while ((ntest % factor) != 0) { factor += 2; } ntest /= factor; factors[nf++] = factor; } /* check that the factorization is correct */ int product = 1; for (int i = 0; i < nf; i++) { product *= factors[i]; } if (product != n) throw new Error("factorization failed for "+n); /* Now, make an array of the right length containing the factors... */ int f[] = new int[nf]; System.arraycopy(factors,0,f,0,nf); return f; } /** Return the integer log, base 2, of n, or -1 if n is not an integral power of 2.*/ public static int log2 (int n){ int log = 0; for(int k=1; k < n; k *= 2, log++); if (n != (1 << log)) return -1 ; /* n is not a power of 2 */ return log; } } /** Computes FFT's of complex, double precision data of arbitrary length n. * This class uses the Mixed Radix method; it has special methods to handle * factors 2, 3, 4, 5, 6 and 7, as well as a general factor. * <P> * This method appears to be faster than the Radix2 method, when both methods apply, * but requires extra storage (which ComplexDoubleFFT_Mixed manages itself). * <P> * See {@link ComplexDoubleFFT ComplexDoubleFFT} for details of data layout. * * @author Bruce R. Miller bruce.miller@nist.gov * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. * @author Derived from GSL (Gnu Scientific Library) * @author GSL's FFT Code by Brian Gough bjg@vvv.lanl.gov * @author Since GSL is released under * @author <H HREF="http://www.gnu.org/copyleft/gpl.html">GPL</A>, * @author this package must also be. */ class ComplexDoubleFFT_Mixed { static final double PI = Math.PI; private double [] dataBuff; public ComplexDoubleFFT_Mixed(int n){ if (n <= 0) throw new IllegalArgumentException("The transform length must be >=0 : "+n); this.n = n; setup_wavetable(n); dataBuff=new double[2*n]; } public DoubleImage [] fft(DoubleImage inputRe, DoubleImage inputIm, boolean column) {//double inputRe[], double inputIm[]) int bdim=inputRe.bdim; if (inputIm==null) inputIm=(DoubleImage)inputRe.copyImage(false); if (column) { for (int b = 0; b < bdim; b++) { for (int num = 0; num < inputRe.xdim; num++) { for (int i = 0, j = 0; j<n; i += 2, j++) { dataBuff[i] = inputRe.getPixelXYBDouble(num, j,b); dataBuff[i + 1] = inputIm.getPixelXYBDouble(num, j,b); } transform(dataBuff, 0, 2); for (int i = 0, j = 0; j<n; i += 2, j++) { inputRe.setPixelXYBDouble(num, j,b, dataBuff[i]); inputIm.setPixelXYBDouble(num, j,b, dataBuff[i + 1]); } // } } } } else { for (int b = 0; b < bdim; b++) { for (int num = 0; num < inputRe.ydim; num++) { for (int i = 0, j = 0; j<n; i += 2, j++) { dataBuff[i] = inputRe.getPixelXYBDouble(j, num,b); dataBuff[i + 1] = inputIm.getPixelXYBDouble(j, num,b); } transform(dataBuff, 0, 2); for (int i = 0, j = 0; j<n; i += 2, j++) { inputRe.setPixelXYBDouble(j, num,b, dataBuff[i]); inputIm.setPixelXYBDouble(j, num,b, dataBuff[i + 1]); } // } } } } DoubleImage[] output = new DoubleImage[2]; output[0]=inputRe; output[1]=inputIm; return output; } public DoubleImage [] ifft(DoubleImage inputRe, DoubleImage inputIm, boolean column) {//double inputRe[], double inputIm[]) int bdim=inputRe.bdim; if (inputIm==null) inputIm = (DoubleImage) inputRe.copyImage(false); if (column) { for (int b = 0; b < bdim; b++) { for (int num = 0; num < inputRe.xdim; num++) { for (int i = 0, j = 0; j<n; i += 2, j++) { dataBuff[i] = inputRe.getPixelXYBDouble(num, j,b); dataBuff[i + 1] = inputIm.getPixelXYBDouble(num, j,b); } backtransform(dataBuff, 0, 2); for (int i = 0, j = 0; j<n; i += 2, j++) { inputRe.setPixelXYBDouble(num, j,b, dataBuff[i] / n); inputIm.setPixelXYBDouble(num, j,b, dataBuff[i + 1] / n); } // } } } } else { for (int b = 0; b < bdim; b++) { for (int num = 0; num < inputRe.ydim; num++) { for (int i = 0, j = 0; j<n; i += 2, j++) { dataBuff[i] = inputRe.getPixelXYBDouble(j, num,b); dataBuff[i + 1] = inputIm.getPixelXYBDouble(j, num,b); } backtransform(dataBuff, 0, 2); for (int i = 0, j = 0; j<n; i += 2, j++) { inputRe.setPixelXYBDouble(j, num,b, dataBuff[i] / n); inputIm.setPixelXYBDouble(j, num,b, dataBuff[i + 1] / n); } // } } } } DoubleImage[] output = new DoubleImage[2]; output[0]=inputRe; output[1]=inputIm; return output; } /** Compute the Fast Fourier Transform of data leaving the result in data. * The array data must contain the data points in the following locations: *<PRE> * Re(d[i]) = data[i0 + stride*i] * Im(d[i]) = data[i0 + stride*i+1] *</PRE> */ public void transform(double data[], int i0, int stride) { checkData(data,i0,stride); transform_internal(data, i0, stride, -1); } /** Compute the (unnomalized) inverse FFT of data, leaving it in place. * The frequency domain data must be in wrap-around order, and be stored * in the following locations: *<PRE> * Re(D[i]) = data[i0 + stride*i] * Im(D[i]) = data[i0 + stride*i+1] *</PRE> */ public void backtransform (double data[], int i0, int stride){ checkData(data,i0,stride); transform_internal(data, i0, stride, +1); } /*______________________________________________________________________ Setting up the Wavetable */ private int factors[]; // Reversed the last 2 levels of the twiddle array compared to what the C version had. private double twiddle[][][]; private int available_factors[]={7, 6, 5, 4, 3, 2}; void setup_wavetable(int n){ if (n <= 0) throw new Error("length must be positive integer : "+n); this.n = n; factors = Factorize.factor(n, available_factors); double d_theta = -2.0 * PI / ((double) n); int product = 1; twiddle = new double[factors.length][][]; for (int i = 0; i < factors.length; i++) { int factor = factors[i]; int product_1 = product; /* product_1 = p_(i-1) */ product *= factor; int q = n / product; twiddle[i] = new double[q+1][2*(factor-1)]; double twid[][] = twiddle[i]; for(int j=1; j<factor; j++){ twid[0][2*(j-1)] = 1.0; twid[0][2*(j-1)+1] = 0.0; } for (int k = 1; k <= q; k++) { int m = 0; for(int j=1; j<factor; j++){ // int m = (k*j*product_1) % n; m += k*product_1; m %= n; double theta = d_theta * m; /* d_theta*j*k*p_(i-1) */ twid[k][2*(j-1)] = Math.cos(theta); twid[k][2*(j-1)+1] = Math.sin(theta); }} } } /*______________________________________________________________________ The main transformation driver */ void transform_internal(double data[], int i0, int stride, int sign){ if (n == 1) return; /* FFT of 1 data point is the identity */ double scratch[] = new double[2*n]; int product = 1; int state = 0; double in[], out[]; int istride, ostride; int in0, out0; for (int i = 0; i < factors.length; i++) { int factor = factors[i]; product *= factor; if (state == 0) { in = data; in0 = i0; istride = stride; out = scratch; out0 = 0; ostride = 2; state = 1; } else { in = scratch; in0 = 0; istride = 2; out = data; out0 = i0; ostride = stride; state = 0; } switch(factor){ case 2: pass_2(i,in, in0, istride, out, out0, ostride, sign, product); break; case 3: pass_3(i,in, in0, istride, out, out0, ostride, sign, product); break; case 4: pass_4(i,in, in0, istride, out, out0, ostride, sign, product); break; case 5: pass_5(i,in, in0, istride, out, out0, ostride, sign, product); break; case 6: pass_6(i,in, in0, istride, out, out0, ostride, sign, product); break; case 7: pass_7(i,in, in0, istride, out, out0, ostride, sign, product); break; default:pass_n(i,in, in0, istride, out, out0, ostride, sign, factor, product); } } if (state == 1){ /* copy results back from scratch to data */ for (int i = 0; i < n; i++) { data[i0+stride*i] = scratch[2*i]; data[i0+stride*i+1] = scratch[2*i+1]; }} } /*______________________________________________________________________*/ void pass_2(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int product) { int k, k1; int factor = 2; int m = n / factor; int q = n / product; int product_1 = product / factor; int di = istride * m; int dj = ostride * product_1; int i = in0, j = out0; double x_real, x_imag; for (k = 0; k < q; k++) { double twids[] = twiddle[fi][k]; double w_real = twids[0]; double w_imag = -sign*twids[1]; for (k1 = 0; k1 < product_1; k1++) { double z0_real = in[i]; double z0_imag = in[i+1]; double z1_real = in[i+di]; double z1_imag = in[i+di+1]; i += istride; /* compute x = W(2) z */ /* apply twiddle factors */ /* out0 = 1 * (z0 + z1) */ out[j] = z0_real + z1_real; out[j+1] = z0_imag + z1_imag; /* out1 = w * (z0 - z1) */ x_real = z0_real - z1_real; x_imag = z0_imag - z1_imag; out[j+dj] = w_real * x_real - w_imag * x_imag; out[j+dj+1] = w_real * x_imag + w_imag * x_real; j += ostride; } j += (factor-1)*dj; }} /*______________________________________________________________________*/ void pass_3(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int product) { int k, k1; int factor = 3; int m = n / factor; int q = n / product; int product_1 = product / factor; double tau = sign * Math.sqrt(3.0) / 2.0; int di = istride * m; int dj = ostride * product_1; int i = in0, j = out0; double x_real, x_imag; for (k = 0; k < q; k++) { double twids[] = twiddle[fi][k]; double w1_real = twids[0]; double w1_imag = -sign*twids[1]; double w2_real = twids[2]; double w2_imag = -sign*twids[3]; for (k1 = 0; k1 < product_1; k1++) { double z0_real = in[i]; double z0_imag = in[i+1]; double z1_real = in[i+di]; double z1_imag = in[i+di+1]; double z2_real = in[i+2*di]; double z2_imag = in[i+2*di+1]; i += istride; /* compute x = W(3) z */ /* t1 = z1 + z2 */ double t1_real = z1_real + z2_real; double t1_imag = z1_imag + z2_imag; /* t2 = z0 - t1/2 */ double t2_real = z0_real - t1_real / 2.0; double t2_imag = z0_imag - t1_imag / 2.0; /* t3 = (+/-) sin(pi/3)*(z1 - z2) */ double t3_real = tau * (z1_real - z2_real); double t3_imag = tau * (z1_imag - z2_imag); /* apply twiddle factors */ /* out0 = 1 * (z0 + t1) */ out[j] = z0_real + t1_real; out[j+1] = z0_imag + t1_imag; /* out1 = w1 * (t2 + i t3) */ x_real = t2_real - t3_imag; x_imag = t2_imag + t3_real; out[j+dj] = w1_real * x_real - w1_imag * x_imag; out[j+dj+1] = w1_real * x_imag + w1_imag * x_real; /* out2 = w2 * (t2 - i t3) */ x_real = t2_real + t3_imag; x_imag = t2_imag - t3_real; out[j+2*dj] = w2_real * x_real - w2_imag * x_imag; out[j+2*dj+1] = w2_real * x_imag + w2_imag * x_real; j += ostride; } j += (factor-1) * dj; }} /*______________________________________________________________________*/ void pass_4(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int product) { int k, k1; int factor = 4; int m = n / factor; int q = n / product; int p_1 = product / factor; int i = in0, j = out0; int di = istride * m; int dj = ostride * p_1; double x_real, x_imag; for (k = 0; k < q; k++) { double twids[] = twiddle[fi][k]; double w1_real = twids[0]; double w1_imag = -sign*twids[1]; double w2_real = twids[2]; double w2_imag = -sign*twids[3]; double w3_real = twids[4]; double w3_imag = -sign*twids[5]; for (k1 = 0; k1 < p_1; k1++) { double z0_real = in[i]; double z0_imag = in[i+1]; double z1_real = in[i+di]; double z1_imag = in[i+di+1]; double z2_real = in[i+2*di]; double z2_imag = in[i+2*di+1]; double z3_real = in[i+3*di]; double z3_imag = in[i+3*di+1]; i += istride; /* compute x = W(4) z */ /* t1 = z0 + z2 */ double t1_real = z0_real + z2_real; double t1_imag = z0_imag + z2_imag; /* t2 = z1 + z3 */ double t2_real = z1_real + z3_real; double t2_imag = z1_imag + z3_imag; /* t3 = z0 - z2 */ double t3_real = z0_real - z2_real; double t3_imag = z0_imag - z2_imag; /* t4 = (+/-) (z1 - z3) */ double t4_real = sign * (z1_real - z3_real); double t4_imag = sign * (z1_imag - z3_imag); /* apply twiddle factors */ /* out0 = 1 * (t1 + t2) */ out[j] = t1_real + t2_real; out[j+1] = t1_imag + t2_imag; /* out1 = w1 * (t3 + i t4) */ x_real = t3_real - t4_imag; x_imag = t3_imag + t4_real; out[j + dj] = w1_real * x_real - w1_imag * x_imag; out[j + dj+1] = w1_real * x_imag + w1_imag * x_real; /* out2 = w2 * (t1 - t2) */ x_real = t1_real - t2_real; x_imag = t1_imag - t2_imag; out[j + 2 * dj] = w2_real * x_real - w2_imag * x_imag; out[j + 2 * dj+1] = w2_real * x_imag + w2_imag * x_real; /* out3 = w3 * (t3 - i t4) */ x_real = t3_real + t4_imag; x_imag = t3_imag - t4_real; out[j + 3 * dj] = w3_real * x_real - w3_imag * x_imag; out[j + 3 * dj+1] = w3_real * x_imag + w3_imag * x_real; j += ostride; } j += (factor - 1)*dj; }} /*______________________________________________________________________*/ void pass_5(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int product) { int k, k1; int factor = 5; int m = n / factor; int q = n / product; int p_1 = product / factor; double tau = (Math.sqrt (5.0) / 4.0); double sin_2pi_by_5 = sign * Math.sin (2.0 * PI / 5.0); double sin_2pi_by_10 = sign * Math.sin (2.0 * PI / 10.0); int i = in0, j = out0; int di = istride * m; int dj = ostride * p_1; double x_real, x_imag; for (k = 0; k < q; k++) { double twids[] = twiddle[fi][k]; double w1_real = twids[0]; double w1_imag = -sign*twids[1]; double w2_real = twids[2]; double w2_imag = -sign*twids[3]; double w3_real = twids[4]; double w3_imag = -sign*twids[5]; double w4_real = twids[6]; double w4_imag = -sign*twids[7]; for (k1 = 0; k1 < p_1; k1++) { double z0_real = in[i]; double z0_imag = in[i+1]; double z1_real = in[i + di]; double z1_imag = in[i + di+1]; double z2_real = in[i + 2*di]; double z2_imag = in[i + 2*di+1]; double z3_real = in[i + 3*di]; double z3_imag = in[i + 3*di+1]; double z4_real = in[i + 4*di]; double z4_imag = in[i + 4*di+1]; i += istride; /* compute x = W(5) z */ /* t1 = z1 + z4 */ double t1_real = z1_real + z4_real; double t1_imag = z1_imag + z4_imag; /* t2 = z2 + z3 */ double t2_real = z2_real + z3_real; double t2_imag = z2_imag + z3_imag; /* t3 = z1 - z4 */ double t3_real = z1_real - z4_real; double t3_imag = z1_imag - z4_imag; /* t4 = z2 - z3 */ double t4_real = z2_real - z3_real; double t4_imag = z2_imag - z3_imag; /* t5 = t1 + t2 */ double t5_real = t1_real + t2_real; double t5_imag = t1_imag + t2_imag; /* t6 = (sqrt(5)/4)(t1 - t2) */ double t6_real = tau * (t1_real - t2_real); double t6_imag = tau * (t1_imag - t2_imag); /* t7 = z0 - ((t5)/4) */ double t7_real = z0_real - t5_real / 4.0; double t7_imag = z0_imag - t5_imag / 4.0; /* t8 = t7 + t6 */ double t8_real = t7_real + t6_real; double t8_imag = t7_imag + t6_imag; /* t9 = t7 - t6 */ double t9_real = t7_real - t6_real; double t9_imag = t7_imag - t6_imag; /* t10 = sin(2 pi/5) t3 + sin(2 pi/10) t4 */ double t10_real = sin_2pi_by_5 * t3_real + sin_2pi_by_10 * t4_real; double t10_imag = sin_2pi_by_5 * t3_imag + sin_2pi_by_10 * t4_imag; /* t11 = sin(2 pi/10) t3 - sin(2 pi/5) t4 */ double t11_real = sin_2pi_by_10 * t3_real - sin_2pi_by_5 * t4_real; double t11_imag = sin_2pi_by_10 * t3_imag - sin_2pi_by_5 * t4_imag; /* apply twiddle factors */ /* out0 = 1 * (z0 + t5) */ out[j] = z0_real + t5_real; out[j+1] = z0_imag + t5_imag; /* out1 = w1 * (t8 + i t10) */ x_real = t8_real - t10_imag; x_imag = t8_imag + t10_real; out[j + dj] = w1_real * x_real - w1_imag * x_imag; out[j + dj+1] = w1_real * x_imag + w1_imag * x_real; /* out2 = w2 * (t9 + i t11) */ x_real = t9_real - t11_imag; x_imag = t9_imag + t11_real; out[j+2*dj] = w2_real * x_real - w2_imag * x_imag; out[j+2*dj+1] = w2_real * x_imag + w2_imag * x_real; /* out3 = w3 * (t9 - i t11) */ x_real = t9_real + t11_imag; x_imag = t9_imag - t11_real; out[j+3*dj] = w3_real * x_real - w3_imag * x_imag; out[j+3*dj+1] = w3_real * x_imag + w3_imag * x_real; /* out4 = w4 * (t8 - i t10) */ x_real = t8_real + t10_imag; x_imag = t8_imag - t10_real; out[j+4*dj] = w4_real * x_real - w4_imag * x_imag; out[j+4*dj+1] = w4_real * x_imag + w4_imag * x_real; j += ostride; } j += (factor - 1)*dj; }} /*______________________________________________________________________*/ void pass_6(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int product) { int k, k1; int factor = 6; int m = n / factor; int q = n / product; int p_1 = product / factor; double tau = sign * Math.sqrt (3.0) / 2.0; int i = in0, j = out0; int di = istride * m; int dj = ostride * p_1; double x_real, x_imag; for (k = 0; k < q; k++) { double twids[] = twiddle[fi][k]; double w1_real = twids[0]; double w1_imag = -sign*twids[1]; double w2_real = twids[2]; double w2_imag = -sign*twids[3]; double w3_real = twids[4]; double w3_imag = -sign*twids[5]; double w4_real = twids[6]; double w4_imag = -sign*twids[7]; double w5_real = twids[8]; double w5_imag = -sign*twids[9]; for (k1 = 0; k1 < p_1; k1++) { double z0_real = in[i]; double z0_imag = in[i+1]; double z1_real = in[i+di]; double z1_imag = in[i+di+1]; double z2_real = in[i+2*di]; double z2_imag = in[i+2*di+1]; double z3_real = in[i+3*di]; double z3_imag = in[i+3*di+1]; double z4_real = in[i+4*di]; double z4_imag = in[i+4*di+1]; double z5_real = in[i+5*di]; double z5_imag = in[i+5*di+1]; i += istride; /* compute x = W(6) z */ /* W(6) is a combination of sums and differences of W(3) acting on the even and odd elements of z */ /* ta1 = z2 + z4 */ double ta1_real = z2_real + z4_real; double ta1_imag = z2_imag + z4_imag; /* ta2 = z0 - ta1/2 */ double ta2_real = z0_real - ta1_real / 2; double ta2_imag = z0_imag - ta1_imag / 2; /* ta3 = (+/-) sin(pi/3)*(z2 - z4) */ double ta3_real = tau * (z2_real - z4_real); double ta3_imag = tau * (z2_imag - z4_imag); /* a0 = z0 + ta1 */ double a0_real = z0_real + ta1_real; double a0_imag = z0_imag + ta1_imag; /* a1 = ta2 + i ta3 */ double a1_real = ta2_real - ta3_imag; double a1_imag = ta2_imag + ta3_real; /* a2 = ta2 - i ta3 */ double a2_real = ta2_real + ta3_imag; double a2_imag = ta2_imag - ta3_real; /* tb1 = z5 + z1 */ double tb1_real = z5_real + z1_real; double tb1_imag = z5_imag + z1_imag; /* tb2 = z3 - tb1/2 */ double tb2_real = z3_real - tb1_real / 2; double tb2_imag = z3_imag - tb1_imag / 2; /* tb3 = (+/-) sin(pi/3)*(z5 - z1) */ double tb3_real = tau * (z5_real - z1_real); double tb3_imag = tau * (z5_imag - z1_imag); /* b0 = z3 + tb1 */ double b0_real = z3_real + tb1_real; double b0_imag = z3_imag + tb1_imag; /* b1 = tb2 + i tb3 */ double b1_real = tb2_real - tb3_imag; double b1_imag = tb2_imag + tb3_real; /* b2 = tb2 - i tb3 */ double b2_real = tb2_real + tb3_imag; double b2_imag = tb2_imag - tb3_real; /* apply twiddle factors */ /* out0 = 1 * (a0 + b0) */ out[j] = a0_real + b0_real; out[j+1] = a0_imag + b0_imag; /* out1 = w1 * (a1 - b1) */ x_real = a1_real - b1_real; x_imag = a1_imag - b1_imag; out[j+dj] = w1_real * x_real - w1_imag * x_imag; out[j+dj+1] = w1_real * x_imag + w1_imag * x_real; /* out2 = w2 * (a2 + b2) */ x_real = a2_real + b2_real; x_imag = a2_imag + b2_imag; out[j+2*dj] = w2_real * x_real - w2_imag * x_imag; out[j+2*dj+1] = w2_real * x_imag + w2_imag * x_real; /* out3 = w3 * (a0 - b0) */ x_real = a0_real - b0_real; x_imag = a0_imag - b0_imag; out[j+3*dj] = w3_real * x_real - w3_imag * x_imag; out[j+3*dj+1] = w3_real * x_imag + w3_imag * x_real; /* out4 = w4 * (a1 + b1) */ x_real = a1_real + b1_real; x_imag = a1_imag + b1_imag; out[j+4*dj] = w4_real * x_real - w4_imag * x_imag; out[j+4*dj+1] = w4_real * x_imag + w4_imag * x_real; /* out5 = w5 * (a2 - b2) */ x_real = a2_real - b2_real; x_imag = a2_imag - b2_imag; out[j+5*dj] = w5_real * x_real - w5_imag * x_imag; out[j+5*dj+1] = w5_real * x_imag + w5_imag * x_real; j += ostride; } j += (factor - 1)*dj; }} /*______________________________________________________________________*/ void pass_7(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int product){ int k, k1; int factor = 7; int m = n / factor; int q = n / product; int p_1 = product / factor; double c1 = Math.cos(1.0 * 2.0 * PI / 7.0); double c2 = Math.cos(2.0 * 2.0 * PI / 7.0); double c3 = Math.cos(3.0 * 2.0 * PI / 7.0); double s1 = (-sign)*Math.sin(1.0 * 2.0 * PI / 7.0); double s2 = (-sign)*Math.sin(2.0 * 2.0 * PI / 7.0); double s3 = (-sign)*Math.sin(3.0 * 2.0 * PI / 7.0); int i = in0, j = out0; int di = istride * m; int dj = ostride * p_1; double x_real, x_imag; for (k = 0; k < q; k++) { double twids[] = twiddle[fi][k]; double w1_real = twids[0]; double w1_imag = -sign*twids[1]; double w2_real = twids[2]; double w2_imag = -sign*twids[3]; double w3_real = twids[4]; double w3_imag = -sign*twids[5]; double w4_real = twids[6]; double w4_imag = -sign*twids[7]; double w5_real = twids[8]; double w5_imag = -sign*twids[9]; double w6_real = twids[10]; double w6_imag = -sign*twids[11]; for (k1 = 0; k1 < p_1; k1++) { double z0_real = in[i]; double z0_imag = in[i+1]; double z1_real = in[i+di]; double z1_imag = in[i+di+1]; double z2_real = in[i+2*di]; double z2_imag = in[i+2*di+1]; double z3_real = in[i+3*di]; double z3_imag = in[i+3*di+1]; double z4_real = in[i+4*di]; double z4_imag = in[i+4*di+1]; double z5_real = in[i+5*di]; double z5_imag = in[i+5*di+1]; double z6_real = in[i+6*di]; double z6_imag = in[i+6*di+1]; i += istride; /* compute x = W(7) z */ /* t0 = z1 + z6 */ double t0_real = z1_real + z6_real; double t0_imag = z1_imag + z6_imag; /* t1 = z1 - z6 */ double t1_real = z1_real - z6_real; double t1_imag = z1_imag - z6_imag; /* t2 = z2 + z5 */ double t2_real = z2_real + z5_real; double t2_imag = z2_imag + z5_imag; /* t3 = z2 - z5 */ double t3_real = z2_real - z5_real; double t3_imag = z2_imag - z5_imag; /* t4 = z4 + z3 */ double t4_real = z4_real + z3_real; double t4_imag = z4_imag + z3_imag; /* t5 = z4 - z3 */ double t5_real = z4_real - z3_real; double t5_imag = z4_imag - z3_imag; /* t6 = t2 + t0 */ double t6_real = t2_real + t0_real; double t6_imag = t2_imag + t0_imag; /* t7 = t5 + t3 */ double t7_real = t5_real + t3_real; double t7_imag = t5_imag + t3_imag; /* b0 = z0 + t6 + t4 */ double b0_real = z0_real + t6_real + t4_real; double b0_imag = z0_imag + t6_imag + t4_imag; /* b1 = ((cos(2pi/7) + cos(4pi/7) + cos(6pi/7))/3-1) (t6 + t4) */ double b1_real = (((c1 + c2 + c3)/3.0 - 1.0) * (t6_real + t4_real)); double b1_imag = (((c1 + c2 + c3)/3.0 - 1.0) * (t6_imag + t4_imag)); /* b2 = ((2*cos(2pi/7) - cos(4pi/7) - cos(6pi/7))/3) (t0 - t4) */ double b2_real = (((2.0 * c1 - c2 - c3)/3.0) * (t0_real - t4_real)); double b2_imag = (((2.0 * c1 - c2 - c3)/3.0) * (t0_imag - t4_imag)); /* b3 = ((cos(2pi/7) - 2*cos(4pi/7) + cos(6pi/7))/3) (t4 - t2) */ double b3_real = (((c1 - 2.0*c2 + c3)/3.0) * (t4_real - t2_real)); double b3_imag = (((c1 - 2.0*c2 + c3)/3.0) * (t4_imag - t2_imag)); /* b4 = ((cos(2pi/7) + cos(4pi/7) - 2*cos(6pi/7))/3) (t2 - t0) */ double b4_real = (((c1 + c2 - 2.0 * c3)/3.0) * (t2_real - t0_real)); double b4_imag = (((c1 + c2 - 2.0 * c3)/3.0) * (t2_imag - t0_imag)); /* b5 = sign * ((sin(2pi/7) + sin(4pi/7) - sin(6pi/7))/3) (t7 + t1) */ double b5_real = ((s1 + s2 - s3)/3.0) * (t7_real + t1_real); double b5_imag = ((s1 + s2 - s3)/3.0) * (t7_imag + t1_imag); /* b6 = sign * ((2sin(2pi/7) - sin(4pi/7) + sin(6pi/7))/3) (t1 - t5) */ double b6_real = ((2.0 * s1 - s2 + s3)/3.0) * (t1_real - t5_real); double b6_imag = ((2.0 * s1 - s2 + s3)/3.0) * (t1_imag - t5_imag); /* b7 = sign * ((sin(2pi/7) - 2sin(4pi/7) - sin(6pi/7))/3) (t5 - t3) */ double b7_real = ((s1 - 2.0 * s2 - s3)/3.0) * (t5_real - t3_real); double b7_imag = ((s1 - 2.0 * s2 - s3)/3.0) * (t5_imag - t3_imag); /* b8 = sign * ((sin(2pi/7) + sin(4pi/7) + 2sin(6pi/7))/3) (t3 - t1) */ double b8_real = ((s1 + s2 + 2.0 * s3)/3.0) * (t3_real - t1_real); double b8_imag = ((s1 + s2 + 2.0 * s3)/3.0) * (t3_imag - t1_imag); /* T0 = b0 + b1 */ double T0_real = b0_real + b1_real; double T0_imag = b0_imag + b1_imag; /* T1 = b2 + b3 */ double T1_real = b2_real + b3_real; double T1_imag = b2_imag + b3_imag; /* T2 = b4 - b3 */ double T2_real = b4_real - b3_real; double T2_imag = b4_imag - b3_imag; /* T3 = -b2 - b4 */ double T3_real = -b2_real - b4_real; double T3_imag = -b2_imag - b4_imag; /* T4 = b6 + b7 */ double T4_real = b6_real + b7_real; double T4_imag = b6_imag + b7_imag; /* T5 = b8 - b7 */ double T5_real = b8_real - b7_real; double T5_imag = b8_imag - b7_imag; /* T6 = -b8 - b6 */ double T6_real = -b8_real - b6_real; double T6_imag = -b8_imag - b6_imag; /* T7 = T0 + T1 */ double T7_real = T0_real + T1_real; double T7_imag = T0_imag + T1_imag; /* T8 = T0 + T2 */ double T8_real = T0_real + T2_real; double T8_imag = T0_imag + T2_imag; /* T9 = T0 + T3 */ double T9_real = T0_real + T3_real; double T9_imag = T0_imag + T3_imag; /* T10 = T4 + b5 */ double T10_real = T4_real + b5_real; double T10_imag = T4_imag + b5_imag; /* T11 = T5 + b5 */ double T11_real = T5_real + b5_real; double T11_imag = T5_imag + b5_imag; /* T12 = T6 + b5 */ double T12_real = T6_real + b5_real; double T12_imag = T6_imag + b5_imag; /* apply twiddle factors */ /* out0 = 1 * b0 */ out[j] = b0_real; out[j+1] = b0_imag; /* out1 = w1 * (T7 - i T10) */ x_real = T7_real + T10_imag; x_imag = T7_imag - T10_real; out[j+dj] = w1_real * x_real - w1_imag * x_imag; out[j+dj+1] = w1_real * x_imag + w1_imag * x_real; /* out2 = w2 * (T9 - i T12) */ x_real = T9_real + T12_imag; x_imag = T9_imag - T12_real; out[j+2*dj] = w2_real * x_real - w2_imag * x_imag; out[j+2*dj+1] = w2_real * x_imag + w2_imag * x_real; /* out3 = w3 * (T8 + i T11) */ x_real = T8_real - T11_imag; x_imag = T8_imag + T11_real; out[j+3*dj] = w3_real * x_real - w3_imag * x_imag; out[j+3*dj+1] = w3_real * x_imag + w3_imag * x_real; /* out4 = w4 * (T8 - i T11) */ x_real = T8_real + T11_imag; x_imag = T8_imag - T11_real; out[j+4*dj] = w4_real * x_real - w4_imag * x_imag; out[j+4*dj+1] = w4_real * x_imag + w4_imag * x_real; /* out5 = w5 * (T9 + i T12) */ x_real = T9_real - T12_imag; x_imag = T9_imag + T12_real; out[j+5*dj] = w5_real * x_real - w5_imag * x_imag; out[j+5*dj+1] = w5_real * x_imag + w5_imag * x_real; /* out6 = w6 * (T7 + i T10) */ x_real = T7_real - T10_imag; x_imag = T7_imag + T10_real; out[j+6*dj] = w6_real * x_real - w6_imag * x_imag; out[j+6*dj+1] = w6_real * x_imag + w6_imag * x_real; j += ostride; } j += (factor - 1)*dj; }} /*______________________________________________________________________*/ void pass_n(int fi, double in[], int in0, int istride, double out[], int out0, int ostride, int sign, int factor, int product){ int i = 0, j = 0; int k, k1; int m = n / factor; int q = n / product; int p_1 = product / factor; int jump = (factor - 1) * p_1; int e, e1; for (i = 0; i < m; i++) { out[out0+ostride*i] = in[in0+istride*i]; out[out0+ostride*i+1] = in[in0+istride*i+1]; } for (e = 1; e < (factor - 1) / 2 + 1; e++) { for (i = 0; i < m; i++) { int idx = i + e * m; int idxc = i + (factor - e) * m; out[out0+ostride*idx] = in[in0+istride*idx] + in[in0+istride*idxc]; out[out0+ostride*idx+1] = in[in0+istride*idx+1] + in[in0+istride*idxc+1]; out[out0+ostride*idxc] = in[in0+istride*idx] - in[in0+istride*idxc]; out[out0+ostride*idxc+1] = in[in0+istride*idx+1] - in[in0+istride*idxc+1]; }} /* e = 0 */ for (i=0; i<m; i++) { in[in0+istride*i] = out[out0+ostride*i]; in[in0+istride*i+1] = out[out0+ostride*i+1]; } for (e1 = 1; e1 < (factor - 1) / 2 + 1; e1++){ for (i = 0; i < m; i++){ in[in0+istride*i] += out[out0+ostride*(i + e1*m)]; in[in0+istride*i+1] += out[out0+ostride*(i + e1*m)+1]; }} double twiddl[] = twiddle[fi][q]; for (e = 1; e < (factor-1)/2 + 1; e++){ int idx = e; double w_real, w_imag; int em = e * m; int ecm = (factor - e) * m; for (i = 0; i < m; i++) { in[in0+istride*(i+em)] = out[out0+ostride*i]; in[in0+istride*(i+em)+1] = out[out0+ostride*i+1]; in[in0+istride*(i+ecm)] = out[out0+ostride*i]; in[in0+istride*(i+ecm)+1] = out[out0+ostride*i+1]; } for (e1 = 1; e1 < (factor - 1) / 2 + 1; e1++) { if (idx == 0) { w_real = 1; w_imag = 0; } else { w_real = twiddl[2*(idx-1)]; w_imag = -sign*twiddl[2*(idx-1)+1]; } for (i = 0; i < m; i++) { double ap = w_real * out[out0+ostride*(i + e1 * m)]; double am = w_imag * out[out0+ostride*(i + (factor - e1) *m)+1]; double bp = w_real * out[out0+ostride*(i + e1 * m)+1]; double bm = w_imag * out[out0+ostride*(i + (factor - e1) *m)]; in[in0+istride*(i + em)] += (ap - am); in[in0+istride*(i + em)+1] += (bp + bm); in[in0+istride*(i + ecm)] += (ap + am); in[in0+istride*(i + ecm)+1] += (bp - bm); } idx += e; idx %= factor; } } i = 0; j = 0; /* k = 0 */ for (k1 = 0; k1 < p_1; k1++) { out[out0+ostride*k1] = in[in0+istride*k1]; out[out0+ostride*k1+1] = in[in0+istride*k1+1]; } for (e1 = 1; e1 < factor; e1++){ for (k1 = 0; k1 < p_1; k1++){ out[out0+ostride*(k1 + e1 * p_1)] = in[in0+istride*(k1 + e1 * m)]; out[out0+ostride*(k1 + e1 * p_1)+1] = in[in0+istride*(k1 + e1 * m)+1]; }} i = p_1; j = product; for (k = 1; k < q; k++) { for (k1 = 0; k1 < p_1; k1++) { out[out0+ostride*j] = in[in0+istride*i]; out[out0+ostride*j+1] = in[in0+istride*i+1]; i++; j++; } j += jump; } i = p_1; j = product; for (k = 1; k < q; k++) { twiddl = twiddle[fi][k]; for (k1 = 0; k1 < p_1; k1++) { for (e1 = 1; e1 < factor; e1++) { double x_real = in[in0+istride*(i + e1 * m)]; double x_imag = in[in0+istride*(i + e1 * m)+1]; double w_real = twiddl[2*(e1-1)]; double w_imag = -sign*twiddl[2*(e1-1)+1]; out[out0+ostride*(j + e1 * p_1)] = w_real * x_real - w_imag * x_imag; out[out0+ostride*(j + e1 * p_1)+1] = w_real * x_imag + w_imag * x_real; } i++; j++; } j += jump; } } int n; protected void checkData(double data[], int i0, int stride){ if (i0 < 0) throw new IllegalArgumentException("The offset must be >=0 : "+i0); if (stride < 2) throw new IllegalArgumentException("The stride must be >=2 : "+stride); if (i0+stride*(n-1)+2 > data.length) throw new IllegalArgumentException("The data array is too small for "+n+":"+ "i0="+i0+" stride="+stride+ " data.length="+data.length); } /** Compute the Fast Fourier Transform of data leaving the result in data. * The array data must be dimensioned (at least) 2*n, consisting of alternating * real and imaginary parts. */ public void transform (double data[]) { transform (data, 0,2); } //public abstract void transform (double data[], int i0, int stride); /** Return data in wraparound order. * @see <a href="package-summary.html#wraparound">wraparound format</A> */ public double[] toWraparoundOrder(double data[]){ return data; } /** Return data in wraparound order. * i0 and stride are used to traverse data; the new array is in * packed (i0=0, stride=2) format. * @see <a href="package-summary.html#wraparound">wraparound format</A> */ public double[] toWraparoundOrder(double data[], int i0, int stride) { if ((i0==0)&&(stride==2)) return data; double newdata[] = new double[2*n]; for(int i=0; i<n; i++){ newdata[2*i] = data[i0+stride*i]; newdata[2*i+1] = data[i0+stride*i+1]; } return newdata; } /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/ public void backtransform (double data[]){ backtransform(data,0,2); } //public abstract void backtransform (double data[], int i0, int stride); /** Return the normalization factor. * Multiply the elements of the backtransform'ed data to get the normalized inverse.*/ public double normalization(){ return 1.0/n; } /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/ public void inverse(double data[]) { inverse(data,0,2); } /** Compute the (nomalized) inverse FFT of data, leaving it in place. * The frequency domain data must be in wrap-around order, and be stored * in the following locations: *<PRE> * Re(D[i]) = data[i0 + stride*i] * Im(D[i]) = data[i0 + stride*i+1] *</PRE> */ public void inverse (double data[], int i0, int stride) { backtransform(data, i0, stride); /* normalize inverse fft with 1/n */ double norm = normalization(); for (int i = 0; i < n; i++) { data[i0+stride*i] *= norm; data[i0+stride*i+1] *= norm; }} }