package fr.unistra.pelican.algorithms.applied.remotesensing; import fr.unistra.pelican.Algorithm; import fr.unistra.pelican.AlgorithmException; import fr.unistra.pelican.Image; import fr.unistra.pelican.InvalidNumberOfParametersException; import fr.unistra.pelican.InvalidTypeOfParameterException; import fr.unistra.pelican.algorithms.io.ImageLoader; import fr.unistra.pelican.algorithms.io.SamplesLoader; import fr.unistra.pelican.algorithms.segmentation.labels.DrawFrontiersOnImage; import fr.unistra.pelican.algorithms.segmentation.labels.FrontiersFromSegmentation; import fr.unistra.pelican.algorithms.segmentation.labels.LabelsToColorByMeanValue; import fr.unistra.pelican.algorithms.visualisation.Viewer2D; /** * Create regions using the watershed algorithm then a classification using 5NN. * Settings are : * - hmin : reduction value of the gradient image to limit oversegmentation * - samples : training set, boolean image, each band is for a class, white pixel are samples. * * @author Sebastien Derivaux */ public class RegionBuilderWatershedClassification extends Algorithm { // Inputs parameters public Image inputImage; public double hmin; public Image samples; // Outputs parameters public Image outputImage; /** * Constructor * */ public RegionBuilderWatershedClassification() { super(); super.inputs = "inputImage,hmin,samples"; super.outputs = "outputImage"; } /* (non-Javadoc) * @see fr.unistra.pelican.Algorithm#launch() */ public void launch() throws AlgorithmException { Image work; try { work = (Image) new RegionBuilderWatershedClassical().process(inputImage, hmin); work = (Image) new LabelsToColorByMeanValue().process(work, inputImage); work = (Image) new RegionBuilderClassificationConnexity().process(work, samples); outputImage = work; } catch (InvalidTypeOfParameterException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (AlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (InvalidNumberOfParametersException e) { // TODO Auto-generated catch block e.printStackTrace(); } } /** * Create regions using the watershed algorithm then a classification using 5NN. * Settings are : * @param hmin : reduction value of the gradient image to limit oversegmentation * @param samples : training set, boolean image, each band is for a class, white pixel are samples. */ public static Image exec(Image inputImage, double hmin, Image samples) { return (Image)new RegionBuilderWatershedClassification().process(inputImage, samples, hmin); } public static void main(String[] args) { String file = "./samples/remotesensing1"; if(args.length > 0) file = args[0]; try { // Load the image Image source = (Image) new ImageLoader().process(file + ".png"); Image samples = (Image) new SamplesLoader().process(file); // Create regions Image result = (Image) new RegionBuilderWatershedClassification().process(source, 0.2, samples); // View it new Viewer2D().process(new DrawFrontiersOnImage().process(source, new FrontiersFromSegmentation().process(result)), "Segmentation of " + file); new Viewer2D().process(new LabelsToColorByMeanValue().process(result, source), "Segmentation of " + file); } catch (InvalidTypeOfParameterException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (AlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (InvalidNumberOfParametersException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }