package fr.unistra.pelican.algorithms.applied.remotesensing; import fr.unistra.pelican.Algorithm; import fr.unistra.pelican.AlgorithmException; import fr.unistra.pelican.BooleanImage; import fr.unistra.pelican.Image; import fr.unistra.pelican.InvalidNumberOfParametersException; import fr.unistra.pelican.InvalidTypeOfParameterException; import fr.unistra.pelican.algorithms.histogram.ContrastStretch; import fr.unistra.pelican.algorithms.io.ImageLoader; import fr.unistra.pelican.algorithms.io.RegionsLoader; import fr.unistra.pelican.algorithms.io.SamplesLoader; import fr.unistra.pelican.algorithms.morphology.gray.GrayMedian; import fr.unistra.pelican.algorithms.segmentation.EvalSegmentation; import fr.unistra.pelican.algorithms.segmentation.labels.DrawFrontiersOnImage; import fr.unistra.pelican.algorithms.segmentation.labels.FilteringLabels; import fr.unistra.pelican.algorithms.segmentation.labels.FrontiersFromSegmentation; import fr.unistra.pelican.algorithms.segmentation.labels.LabelsToColorByMeanValue; import fr.unistra.pelican.algorithms.segmentation.weka.WekaSoftClassification5NN; import fr.unistra.pelican.algorithms.visualisation.Viewer2D; import fr.unistra.pelican.util.morphology.FlatStructuringElement2D; /** * Create regions using a soft 5NN algorithm then watershed algorithm, then a supervised region classification. * Settings are : * - samples : training set, boolean image, each band is for a class, white pixel are samples. * - hmin : reduction value of the gradient image to limit oversegmentation * * @author Sebastien Derivaux */ public class RegionBuilderSoftClassificationWatershedClassification extends Algorithm { // Inputs parameters public Image inputImage; public Image samples; public double threshold; // Outputs parameters public Image outputImage; /** * Constructor * */ public RegionBuilderSoftClassificationWatershedClassification() { super(); super.inputs = "inputImage,samples,threshold"; super.outputs = "outputImage"; } /* (non-Javadoc) * @see fr.unistra.pelican.Algorithm#launch() */ public void launch() throws AlgorithmException { Image work; try { work = (Image) new WekaSoftClassification5NN().process(inputImage, samples); Image probas = (Image) new ContrastStretch().process(work); work = (Image) new RegionBuilderWatershedClassical().process(probas, threshold); BooleanImage labelFilter = FlatStructuringElement2D.createSquareFlatStructuringElement(5); work = (Image) new FilteringLabels().process(work, labelFilter); work = (Image) new LabelsToColorByMeanValue().process(work, probas); work = (Image) new RegionBuilderClassificationConnexity().process(work, samples); outputImage = work; } catch (InvalidTypeOfParameterException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (AlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (InvalidNumberOfParametersException e) { // TODO Auto-generated catch block e.printStackTrace(); } } /** * Create regions using a soft 5NN algorithm then watershed algorithm, then a supervised region classification. * Settings are : * @param samples : training set, boolean image, each band is for a class, white pixel are samples. * @param threshold hmin : reduction value of the gradient image to limit oversegmentation */ public Image exec(Image inputImage, Image samples, double threshold) { return (Image)new RegionBuilderSoftClassificationWatershedClassification().process(inputImage, samples, threshold); } public static void main(String[] args) { String file = "./samples/remotesensing1"; if(args.length > 0) file = args[0]; BooleanImage se3 = FlatStructuringElement2D.createSquareFlatStructuringElement(3); try { // Load the image Image source = (Image) new ImageLoader().process(file + ".png"); Image samples = (Image) new SamplesLoader().process(file); Image regions = (Image) new RegionsLoader().process(file); System.out.println("RegionBuilderSoftClassificationWatershed of " + file); source = (Image) new GrayMedian().process(source, se3); // Create regions Image result = (Image) new RegionBuilderSoftClassificationWatershedClassification().process(source, samples, 0.75); // View it new Viewer2D().process(new DrawFrontiersOnImage().process(source, new FrontiersFromSegmentation().process(result)), "RegionBuilderSoftClassificationWatershedClassification of " + file); new Viewer2D().process(new LabelsToColorByMeanValue().process(result, source), "RegionBuilderSoftClassificationWatershedClassification of " + file); System.out.println(new EvalSegmentation().process(result, regions)); } catch (InvalidTypeOfParameterException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (AlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (InvalidNumberOfParametersException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }