/* -*- Mode: java; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * The contents of this file are subject to the Netscape Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/NPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is Rhino code, released * May 6, 1999. * * The Initial Developer of the Original Code is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1997-2000 Netscape Communications Corporation. All * Rights Reserved. * * Contributor(s): * Igor Bukanov * * Alternatively, the contents of this file may be used under the * terms of the GNU Public License (the "GPL"), in which case the * provisions of the GPL are applicable instead of those above. * If you wish to allow use of your version of this file only * under the terms of the GPL and not to allow others to use your * version of this file under the NPL, indicate your decision by * deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete * the provisions above, a recipient may use your version of this * file under either the NPL or the GPL. */ // Modified by Google package com.google.gwt.dev.js.rhino; import java.io.Serializable; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; /** * Map to associate non-negative integers to objects or integers. * The map does not synchronize any of its operation, so either use * it from a single thread or do own synchronization or perform all mutation * operations on one thread before passing the map to others */ class UintMap implements Serializable { // Map implementation via hashtable, // follows "The Art of Computer Programming" by Donald E. Knuth public UintMap() { this(4); } public UintMap(int initialCapacity) { if (initialCapacity < 0) Context.codeBug(); // Table grow when number of stored keys >= 3/4 of max capacity int minimalCapacity = initialCapacity * 4 / 3; int i; for (i = 2; (1 << i) < minimalCapacity; ++i) { } power = i; if (check && power < 2) Context.codeBug(); } public boolean isEmpty() { return keyCount == 0; } public int size() { return keyCount; } public boolean has(int key) { if (key < 0) Context.codeBug(); return 0 <= findIndex(key); } /** * Get object value assigned with key. * @return key object value or null if key is absent */ public Object getObject(int key) { if (key < 0) Context.codeBug(); if (values != null) { int index = findIndex(key); if (0 <= index) { return values[index]; } } return null; } /** * Get integer value assigned with key. * @return key integer value or defaultValue if key is absent */ public int getInt(int key, int defaultValue) { if (key < 0) Context.codeBug(); int index = findIndex(key); if (0 <= index) { if (ivaluesShift != 0) { return keys[ivaluesShift + index]; } return 0; } return defaultValue; } /** * Get integer value assigned with key. * @return key integer value or defaultValue if key does not exist or does * not have int value * @throws RuntimeException if key does not exist */ public int getExistingInt(int key) { if (key < 0) Context.codeBug(); int index = findIndex(key); if (0 <= index) { if (ivaluesShift != 0) { return keys[ivaluesShift + index]; } return 0; } // Key must exist Context.codeBug(); return 0; } /** * Set object value of the key. * If key does not exist, also set its int value to 0. */ public void put(int key, Object value) { if (key < 0) Context.codeBug(); int index = ensureIndex(key, false); if (values == null) { values = new Object[1 << power]; } values[index] = value; } /** * Set int value of the key. * If key does not exist, also set its object value to null. */ public void put(int key, int value) { if (key < 0) Context.codeBug(); int index = ensureIndex(key, true); if (ivaluesShift == 0) { int N = 1 << power; // keys.length can be N * 2 after clear which set ivaluesShift to 0 if (keys.length != N * 2) { int[] tmp = new int[N * 2]; System.arraycopy(keys, 0, tmp, 0, N); keys = tmp; } ivaluesShift = N; } keys[ivaluesShift + index] = value; } public void remove(int key) { if (key < 0) Context.codeBug(); int index = findIndex(key); if (0 <= index) { keys[index] = DELETED; --keyCount; // Allow to GC value and make sure that new key with the deleted // slot shall get proper default values if (values != null) { values[index] = null; } if (ivaluesShift != 0) { keys[ivaluesShift + index] = 0; } } } public void clear() { int N = 1 << power; if (keys != null) { for (int i = 0; i != N; ++i) { keys[i] = EMPTY; } if (values != null) { for (int i = 0; i != N; ++i) { values[i] = null; } } } ivaluesShift = 0; keyCount = 0; occupiedCount = 0; } /** Return array of present keys */ public int[] getKeys() { int[] keys = this.keys; int n = keyCount; int[] result = new int[n]; for (int i = 0; n != 0; ++i) { int entry = keys[i]; if (entry != EMPTY && entry != DELETED) { result[--n] = entry; } } return result; } private static int tableLookupStep(int fraction, int mask, int power) { int shift = 32 - 2 * power; if (shift >= 0) { return ((fraction >>> shift) & mask) | 1; } else { return (fraction & (mask >>> -shift)) | 1; } } private int findIndex(int key) { int[] keys = this.keys; if (keys != null) { int fraction = key * A; int index = fraction >>> (32 - power); int entry = keys[index]; if (entry == key) { return index; } if (entry != EMPTY) { // Search in table after first failed attempt int mask = (1 << power) - 1; int step = tableLookupStep(fraction, mask, power); int n = 0; do { if (check) { if (n >= occupiedCount) Context.codeBug(); ++n; } index = (index + step) & mask; entry = keys[index]; if (entry == key) { return index; } } while (entry != EMPTY); } } return -1; } // Insert key that is not present to table without deleted entries // and enough free space private int insertNewKey(int key) { if (check && occupiedCount != keyCount) Context.codeBug(); if (check && keyCount == 1 << power) Context.codeBug(); int[] keys = this.keys; int fraction = key * A; int index = fraction >>> (32 - power); if (keys[index] != EMPTY) { int mask = (1 << power) - 1; int step = tableLookupStep(fraction, mask, power); int firstIndex = index; do { if (check && keys[index] == DELETED) Context.codeBug(); index = (index + step) & mask; if (check && firstIndex == index) Context.codeBug(); } while (keys[index] != EMPTY); } keys[index] = key; ++occupiedCount; ++keyCount; return index; } private void rehashTable(boolean ensureIntSpace) { if (keys != null) { // Check if removing deleted entries would free enough space if (keyCount * 2 >= occupiedCount) { // Need to grow: less then half of deleted entries ++power; } } int N = 1 << power; int[] old = keys; int oldShift = ivaluesShift; if (oldShift == 0 && !ensureIntSpace) { keys = new int[N]; } else { ivaluesShift = N; keys = new int[N * 2]; } for (int i = 0; i != N; ++i) { keys[i] = EMPTY; } Object[] oldValues = values; if (oldValues != null) { values = new Object[N]; } int oldCount = keyCount; occupiedCount = 0; if (oldCount != 0) { keyCount = 0; for (int i = 0, remaining = oldCount; remaining != 0; ++i) { int key = old[i]; if (key != EMPTY && key != DELETED) { int index = insertNewKey(key); if (oldValues != null) { values[index] = oldValues[i]; } if (oldShift != 0) { keys[ivaluesShift + index] = old[oldShift + i]; } --remaining; } } } } // Ensure key index creating one if necessary private int ensureIndex(int key, boolean intType) { int index = -1; int firstDeleted = -1; int[] keys = this.keys; if (keys != null) { int fraction = key * A; index = fraction >>> (32 - power); int entry = keys[index]; if (entry == key) { return index; } if (entry != EMPTY) { if (entry == DELETED) { firstDeleted = index; } // Search in table after first failed attempt int mask = (1 << power) - 1; int step = tableLookupStep(fraction, mask, power); int n = 0; do { if (check) { if (n >= occupiedCount) Context.codeBug(); ++n; } index = (index + step) & mask; entry = keys[index]; if (entry == key) { return index; } if (entry == DELETED && firstDeleted < 0) { firstDeleted = index; } } while (entry != EMPTY); } } // Inserting of new key if (check && keys != null && keys[index] != EMPTY) Context.codeBug(); if (firstDeleted >= 0) { index = firstDeleted; } else { // Need to consume empty entry: check occupation level if (keys == null || occupiedCount * 4 >= (1 << power) * 3) { // Too few unused entries: rehash rehashTable(intType); return insertNewKey(key); } ++occupiedCount; } keys[index] = key; ++keyCount; return index; } private void writeObject(ObjectOutputStream out) throws IOException { out.defaultWriteObject(); int count = keyCount; if (count != 0) { boolean hasIntValues = (ivaluesShift != 0); boolean hasObjectValues = (values != null); out.writeBoolean(hasIntValues); out.writeBoolean(hasObjectValues); for (int i = 0; count != 0; ++i) { int key = keys[i]; if (key != EMPTY && key != DELETED) { --count; out.writeInt(key); if (hasIntValues) { out.writeInt(keys[ivaluesShift + i]); } if (hasObjectValues) { out.writeObject(values[i]); } } } } } private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); int writtenKeyCount = keyCount; if (writtenKeyCount != 0) { keyCount = 0; boolean hasIntValues = in.readBoolean(); boolean hasObjectValues = in.readBoolean(); int N = 1 << power; if (hasIntValues) { keys = new int[2 * N]; ivaluesShift = N; }else { keys = new int[N]; } for (int i = 0; i != N; ++i) { keys[i] = EMPTY; } if (hasObjectValues) { values = new Object[N]; } for (int i = 0; i != writtenKeyCount; ++i) { int key = in.readInt(); int index = insertNewKey(key); if (hasIntValues) { int ivalue = in.readInt(); keys[ivaluesShift + index] = ivalue; } if (hasObjectValues) { values[index] = in.readObject(); } } } } static final long serialVersionUID = -6916326879143724506L; // A == golden_ratio * (1 << 32) = ((sqrt(5) - 1) / 2) * (1 << 32) // See Knuth etc. private static final int A = 0x9e3779b9; private static final int EMPTY = -1; private static final int DELETED = -2; // Structure of kyes and values arrays (N == 1 << power): // keys[0 <= i < N]: key value or EMPTY or DELETED mark // values[0 <= i < N]: value of key at keys[i] // keys[N <= i < 2N]: int values of keys at keys[i - N] private transient int[] keys; private transient Object[] values; private int power; private int keyCount; private transient int occupiedCount; // == keyCount + deleted_count // If ivaluesShift != 0, keys[ivaluesShift + index] contains integer // values associated with keys private transient int ivaluesShift; // If true, enables consitency checks private static final boolean check = false; }