/* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.elasticsearch.cache.recycler; import org.elasticsearch.common.Strings; import org.elasticsearch.common.component.AbstractComponent; import org.elasticsearch.common.inject.Inject; import org.elasticsearch.common.recycler.AbstractRecyclerC; import org.elasticsearch.common.recycler.Recycler; import org.elasticsearch.common.settings.Settings; import org.elasticsearch.common.util.BigArrays; import org.elasticsearch.common.util.concurrent.EsExecutors; import org.elasticsearch.threadpool.ThreadPool; import java.util.Arrays; import java.util.Locale; import static org.elasticsearch.common.recycler.Recyclers.*; /** A recycler of fixed-size pages. */ public class PageCacheRecycler extends AbstractComponent { public static final String TYPE = "recycler.page.type"; public static final String LIMIT_HEAP = "recycler.page.limit.heap"; public static final String WEIGHT = "recycler.page.weight"; private final Recycler<byte[]> bytePage; private final Recycler<int[]> intPage; private final Recycler<long[]> longPage; private final Recycler<Object[]> objectPage; public void close() { bytePage.close(); intPage.close(); longPage.close(); objectPage.close(); } private static int maximumSearchThreadPoolSize(ThreadPool threadPool, Settings settings) { ThreadPool.Info searchThreadPool = threadPool.info(ThreadPool.Names.SEARCH); assert searchThreadPool != null; final int maxSize = searchThreadPool.getMax(); if (maxSize <= 0) { // happens with cached thread pools, let's assume there are at most 2x ${number of processors} threads return 2 * EsExecutors.boundedNumberOfProcessors(settings); } else { return maxSize; } } @Inject public PageCacheRecycler(Settings settings, ThreadPool threadPool) { super(settings); final Type type = Type.parse(settings.get(TYPE)); final long limit = settings.getAsMemory(LIMIT_HEAP, "10%").bytes(); final int availableProcessors = EsExecutors.boundedNumberOfProcessors(settings); final int searchThreadPoolSize = maximumSearchThreadPoolSize(threadPool, settings); // We have a global amount of memory that we need to divide across data types. // Since some types are more useful than other ones we give them different weights. // Trying to store all of them in a single stack would be problematic because eg. // a work load could fill the recycler with only byte[] pages and then another // workload that would work with double[] pages couldn't recycle them because there // is no space left in the stack/queue. LRU/LFU policies are not an option either // because they would make obtain/release too costly: we really need constant-time // operations. // Ultimately a better solution would be to only store one kind of data and have the // ability to intepret it either as a source of bytes, doubles, longs, etc. eg. thanks // to direct ByteBuffers or sun.misc.Unsafe on a byte[] but this would have other issues // that would need to be addressed such as garbage collection of native memory or safety // of Unsafe writes. final double bytesWeight = settings.getAsDouble(WEIGHT + ".bytes", 1d); final double intsWeight = settings.getAsDouble(WEIGHT + ".ints", 1d); final double longsWeight = settings.getAsDouble(WEIGHT + ".longs", 1d); // object pages are less useful to us so we give them a lower weight by default final double objectsWeight = settings.getAsDouble(WEIGHT + ".objects", 0.1d); final double totalWeight = bytesWeight + intsWeight + longsWeight + objectsWeight; final int maxPageCount = (int) Math.min(Integer.MAX_VALUE, limit / BigArrays.PAGE_SIZE_IN_BYTES); final int maxBytePageCount = (int) (bytesWeight * maxPageCount / totalWeight); bytePage = build(type, maxBytePageCount, searchThreadPoolSize, availableProcessors, new AbstractRecyclerC<byte[]>() { @Override public byte[] newInstance(int sizing) { return new byte[BigArrays.BYTE_PAGE_SIZE]; } @Override public void recycle(byte[] value) { // nothing to do } }); final int maxIntPageCount = (int) (intsWeight * maxPageCount / totalWeight); intPage = build(type, maxIntPageCount, searchThreadPoolSize, availableProcessors, new AbstractRecyclerC<int[]>() { @Override public int[] newInstance(int sizing) { return new int[BigArrays.INT_PAGE_SIZE]; } @Override public void recycle(int[] value) { // nothing to do } }); final int maxLongPageCount = (int) (longsWeight * maxPageCount / totalWeight); longPage = build(type, maxLongPageCount, searchThreadPoolSize, availableProcessors, new AbstractRecyclerC<long[]>() { @Override public long[] newInstance(int sizing) { return new long[BigArrays.LONG_PAGE_SIZE]; } @Override public void recycle(long[] value) { // nothing to do } }); final int maxObjectPageCount = (int) (objectsWeight * maxPageCount / totalWeight); objectPage = build(type, maxObjectPageCount, searchThreadPoolSize, availableProcessors, new AbstractRecyclerC<Object[]>() { @Override public Object[] newInstance(int sizing) { return new Object[BigArrays.OBJECT_PAGE_SIZE]; } @Override public void recycle(Object[] value) { Arrays.fill(value, null); // we need to remove the strong refs on the objects stored in the array } }); assert BigArrays.PAGE_SIZE_IN_BYTES * (maxBytePageCount + maxIntPageCount + maxLongPageCount + maxObjectPageCount) <= limit; } public Recycler.V<byte[]> bytePage(boolean clear) { final Recycler.V<byte[]> v = bytePage.obtain(); if (v.isRecycled() && clear) { Arrays.fill(v.v(), (byte) 0); } return v; } public Recycler.V<int[]> intPage(boolean clear) { final Recycler.V<int[]> v = intPage.obtain(); if (v.isRecycled() && clear) { Arrays.fill(v.v(), 0); } return v; } public Recycler.V<long[]> longPage(boolean clear) { final Recycler.V<long[]> v = longPage.obtain(); if (v.isRecycled() && clear) { Arrays.fill(v.v(), 0L); } return v; } public Recycler.V<Object[]> objectPage() { // object pages are cleared on release anyway return objectPage.obtain(); } private static <T> Recycler<T> build(Type type, int limit, int estimatedThreadPoolSize, int availableProcessors, Recycler.C<T> c) { final Recycler<T> recycler; if (limit == 0) { recycler = none(c); } else { recycler = type.build(c, limit, estimatedThreadPoolSize, availableProcessors); } return recycler; } public static enum Type { QUEUE { @Override <T> Recycler<T> build(Recycler.C<T> c, int limit, int estimatedThreadPoolSize, int availableProcessors) { return concurrentDeque(c, limit); } }, CONCURRENT { @Override <T> Recycler<T> build(Recycler.C<T> c, int limit, int estimatedThreadPoolSize, int availableProcessors) { return concurrent(dequeFactory(c, limit / availableProcessors), availableProcessors); } }, NONE { @Override <T> Recycler<T> build(Recycler.C<T> c, int limit, int estimatedThreadPoolSize, int availableProcessors) { return none(c); } }; public static Type parse(String type) { if (Strings.isNullOrEmpty(type)) { return CONCURRENT; } try { return Type.valueOf(type.toUpperCase(Locale.ROOT)); } catch (IllegalArgumentException e) { throw new IllegalArgumentException("no type support [" + type + "]"); } } abstract <T> Recycler<T> build(Recycler.C<T> c, int limit, int estimatedThreadPoolSize, int availableProcessors); } }