/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra.dht; import java.io.DataInput; import java.io.IOException; import java.io.Serializable; import java.util.Collection; import java.util.List; import org.apache.cassandra.db.DecoratedKey; import org.apache.cassandra.db.PartitionPosition; import org.apache.cassandra.db.TypeSizes; import org.apache.cassandra.db.marshal.AbstractType; import org.apache.cassandra.io.util.DataOutputPlus; import org.apache.cassandra.net.MessagingService; import org.apache.cassandra.utils.Pair; public abstract class AbstractBounds<T extends RingPosition<T>> implements Serializable { private static final long serialVersionUID = 1L; public static final IPartitionerDependentSerializer<AbstractBounds<Token>> tokenSerializer = new AbstractBoundsSerializer<Token>(Token.serializer); public static final IPartitionerDependentSerializer<AbstractBounds<PartitionPosition>> rowPositionSerializer = new AbstractBoundsSerializer<PartitionPosition>(PartitionPosition.serializer); private enum Type { RANGE, BOUNDS } public final T left; public final T right; public AbstractBounds(T left, T right) { assert left.getPartitioner() == right.getPartitioner(); this.left = left; this.right = right; } /** * Given token T and AbstractBounds ?L,R?, returns Pair(?L,T], (T,R?), * where ? means that the same type of AbstractBounds is returned as the original. * * Put another way, returns a Pair of everything this AbstractBounds contains * up to and including the split position, and everything it contains after * (not including the split position). * * The original AbstractBounds must either contain the position T, or T * should be equals to the left bound L. * * If the split would only yield the same AbstractBound, null is returned * instead. */ public abstract Pair<AbstractBounds<T>, AbstractBounds<T>> split(T position); public abstract boolean inclusiveLeft(); public abstract boolean inclusiveRight(); /** * Whether {@code left} and {@code right} forms a wrapping interval, that is if unwrapping wouldn't be a no-op. * <p> * Note that the semantic is slightly different from {@link Range#isWrapAround()} in the sense that if both * {@code right} are minimal (for the partitioner), this methods return false (doesn't wrap) while * {@link Range#isWrapAround()} returns true (does wrap). This is confusing and we should fix it by * refactoring/rewriting the whole AbstractBounds hierarchy with cleaner semantics, but we don't want to risk * breaking something by changing {@link Range#isWrapAround()} in the meantime. */ public static <T extends RingPosition<T>> boolean strictlyWrapsAround(T left, T right) { return !(left.compareTo(right) <= 0 || right.isMinimum()); } public static <T extends RingPosition<T>> boolean noneStrictlyWrapsAround(Collection<AbstractBounds<T>> bounds) { for (AbstractBounds<T> b : bounds) { if (strictlyWrapsAround(b.left, b.right)) return false; } return true; } @Override public int hashCode() { return 31 * left.hashCode() + right.hashCode(); } /** return true if @param range intersects any of the given @param ranges */ public boolean intersects(Iterable<Range<T>> ranges) { for (Range<T> range2 : ranges) { if (range2.intersects(this)) return true; } return false; } public abstract boolean contains(T start); public abstract List<? extends AbstractBounds<T>> unwrap(); public String getString(AbstractType<?> keyValidator) { return getOpeningString() + format(left, keyValidator) + ", " + format(right, keyValidator) + getClosingString(); } private String format(T value, AbstractType<?> keyValidator) { if (value instanceof DecoratedKey) { return keyValidator.getString(((DecoratedKey)value).getKey()); } else { return value.toString(); } } protected abstract String getOpeningString(); protected abstract String getClosingString(); public abstract boolean isStartInclusive(); public abstract boolean isEndInclusive(); public abstract AbstractBounds<T> withNewRight(T newRight); public static class AbstractBoundsSerializer<T extends RingPosition<T>> implements IPartitionerDependentSerializer<AbstractBounds<T>> { private static final int IS_TOKEN_FLAG = 0x01; private static final int START_INCLUSIVE_FLAG = 0x02; private static final int END_INCLUSIVE_FLAG = 0x04; IPartitionerDependentSerializer<T> serializer; // Use for pre-3.0 protocol private static int kindInt(AbstractBounds<?> ab) { int kind = ab instanceof Range ? Type.RANGE.ordinal() : Type.BOUNDS.ordinal(); if (!(ab.left instanceof Token)) kind = -(kind + 1); return kind; } // For from 3.0 onwards private static int kindFlags(AbstractBounds<?> ab) { int flags = 0; if (ab.left instanceof Token) flags |= IS_TOKEN_FLAG; if (ab.isStartInclusive()) flags |= START_INCLUSIVE_FLAG; if (ab.isEndInclusive()) flags |= END_INCLUSIVE_FLAG; return flags; } public AbstractBoundsSerializer(IPartitionerDependentSerializer<T> serializer) { this.serializer = serializer; } public void serialize(AbstractBounds<T> range, DataOutputPlus out, int version) throws IOException { /* * The first int tells us if it's a range or bounds (depending on the value) _and_ if it's tokens or keys (depending on the * sign). We use negative kind for keys so as to preserve the serialization of token from older version. */ // !WARNING! While we don't support the pre-3.0 messaging protocol, we serialize the token range in the // system table (see SystemKeypsace.rangeToBytes) using the old/pre-3.0 format and until we deal with that // problem, we have to preserve this code. if (version < MessagingService.VERSION_30) out.writeInt(kindInt(range)); else out.writeByte(kindFlags(range)); serializer.serialize(range.left, out, version); serializer.serialize(range.right, out, version); } public AbstractBounds<T> deserialize(DataInput in, IPartitioner p, int version) throws IOException { boolean isToken, startInclusive, endInclusive; // !WARNING! See serialize method above for why we still need to have that condition. if (version < MessagingService.VERSION_30) { int kind = in.readInt(); isToken = kind >= 0; if (!isToken) kind = -(kind+1); // Pre-3.0, everything that wasa not a Range was (wrongly) serialized as a Bound; startInclusive = kind != Type.RANGE.ordinal(); endInclusive = true; } else { int flags = in.readUnsignedByte(); isToken = (flags & IS_TOKEN_FLAG) != 0; startInclusive = (flags & START_INCLUSIVE_FLAG) != 0; endInclusive = (flags & END_INCLUSIVE_FLAG) != 0; } T left = serializer.deserialize(in, p, version); T right = serializer.deserialize(in, p, version); assert isToken == left instanceof Token; if (startInclusive) return endInclusive ? new Bounds<T>(left, right) : new IncludingExcludingBounds<T>(left, right); else return endInclusive ? new Range<T>(left, right) : new ExcludingBounds<T>(left, right); } public long serializedSize(AbstractBounds<T> ab, int version) { // !WARNING! See serialize method above for why we still need to have that condition. int size = version < MessagingService.VERSION_30 ? TypeSizes.sizeof(kindInt(ab)) : 1; size += serializer.serializedSize(ab.left, version); size += serializer.serializedSize(ab.right, version); return size; } } public static <T extends RingPosition<T>> AbstractBounds<T> bounds(Boundary<T> min, Boundary<T> max) { return bounds(min.boundary, min.inclusive, max.boundary, max.inclusive); } public static <T extends RingPosition<T>> AbstractBounds<T> bounds(T min, boolean inclusiveMin, T max, boolean inclusiveMax) { if (inclusiveMin && inclusiveMax) return new Bounds<T>(min, max); else if (inclusiveMax) return new Range<T>(min, max); else if (inclusiveMin) return new IncludingExcludingBounds<T>(min, max); else return new ExcludingBounds<T>(min, max); } // represents one side of a bounds (which side is not encoded) public static class Boundary<T extends RingPosition<T>> { public final T boundary; public final boolean inclusive; public Boundary(T boundary, boolean inclusive) { this.boundary = boundary; this.inclusive = inclusive; } } public Boundary<T> leftBoundary() { return new Boundary<>(left, inclusiveLeft()); } public Boundary<T> rightBoundary() { return new Boundary<>(right, inclusiveRight()); } public static <T extends RingPosition<T>> boolean isEmpty(Boundary<T> left, Boundary<T> right) { int c = left.boundary.compareTo(right.boundary); return c > 0 || (c == 0 && !(left.inclusive && right.inclusive)); } public static <T extends RingPosition<T>> Boundary<T> minRight(Boundary<T> right1, T right2, boolean isInclusiveRight2) { return minRight(right1, new Boundary<T>(right2, isInclusiveRight2)); } public static <T extends RingPosition<T>> Boundary<T> minRight(Boundary<T> right1, Boundary<T> right2) { int c = right1.boundary.compareTo(right2.boundary); if (c != 0) return c < 0 ? right1 : right2; // return the exclusive version, if either return right2.inclusive ? right1 : right2; } public static <T extends RingPosition<T>> Boundary<T> maxLeft(Boundary<T> left1, T left2, boolean isInclusiveLeft2) { return maxLeft(left1, new Boundary<T>(left2, isInclusiveLeft2)); } public static <T extends RingPosition<T>> Boundary<T> maxLeft(Boundary<T> left1, Boundary<T> left2) { int c = left1.boundary.compareTo(left2.boundary); if (c != 0) return c > 0 ? left1 : left2; // return the exclusive version, if either return left2.inclusive ? left1 : left2; } }