/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.cassandra.db; import java.util.*; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicBoolean; import java.util.concurrent.atomic.AtomicLong; import java.util.concurrent.atomic.AtomicReference; import com.google.common.annotations.VisibleForTesting; import com.google.common.base.Throwables; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.cassandra.schema.ColumnMetadata; import org.apache.cassandra.schema.TableMetadata; import org.apache.cassandra.config.DatabaseDescriptor; import org.apache.cassandra.schema.SchemaConstants; import org.apache.cassandra.db.commitlog.CommitLog; import org.apache.cassandra.db.commitlog.CommitLogPosition; import org.apache.cassandra.db.commitlog.IntervalSet; import org.apache.cassandra.db.filter.ClusteringIndexFilter; import org.apache.cassandra.db.filter.ColumnFilter; import org.apache.cassandra.db.lifecycle.LifecycleTransaction; import org.apache.cassandra.db.partitions.*; import org.apache.cassandra.db.rows.EncodingStats; import org.apache.cassandra.db.rows.UnfilteredRowIterator; import org.apache.cassandra.dht.*; import org.apache.cassandra.dht.Murmur3Partitioner.LongToken; import org.apache.cassandra.index.transactions.UpdateTransaction; import org.apache.cassandra.io.sstable.Descriptor; import org.apache.cassandra.io.sstable.SSTableMultiWriter; import org.apache.cassandra.io.sstable.metadata.MetadataCollector; import org.apache.cassandra.io.util.FileUtils; import org.apache.cassandra.service.ActiveRepairService; import org.apache.cassandra.utils.ByteBufferUtil; import org.apache.cassandra.utils.FBUtilities; import org.apache.cassandra.utils.ObjectSizes; import org.apache.cassandra.service.StorageService; import org.apache.cassandra.utils.concurrent.OpOrder; import org.apache.cassandra.utils.memory.HeapPool; import org.apache.cassandra.utils.memory.MemtableAllocator; import org.apache.cassandra.utils.memory.MemtablePool; import org.apache.cassandra.utils.memory.NativePool; import org.apache.cassandra.utils.memory.SlabPool; public class Memtable implements Comparable<Memtable> { private static final Logger logger = LoggerFactory.getLogger(Memtable.class); public static final MemtablePool MEMORY_POOL = createMemtableAllocatorPool(); private static MemtablePool createMemtableAllocatorPool() { long heapLimit = DatabaseDescriptor.getMemtableHeapSpaceInMb() << 20; long offHeapLimit = DatabaseDescriptor.getMemtableOffheapSpaceInMb() << 20; switch (DatabaseDescriptor.getMemtableAllocationType()) { case unslabbed_heap_buffers: return new HeapPool(heapLimit, DatabaseDescriptor.getMemtableCleanupThreshold(), new ColumnFamilyStore.FlushLargestColumnFamily()); case heap_buffers: return new SlabPool(heapLimit, 0, DatabaseDescriptor.getMemtableCleanupThreshold(), new ColumnFamilyStore.FlushLargestColumnFamily()); case offheap_buffers: if (!FileUtils.isCleanerAvailable) { throw new IllegalStateException("Could not free direct byte buffer: offheap_buffers is not a safe memtable_allocation_type without this ability, please adjust your config. This feature is only guaranteed to work on an Oracle JVM. Refusing to start."); } return new SlabPool(heapLimit, offHeapLimit, DatabaseDescriptor.getMemtableCleanupThreshold(), new ColumnFamilyStore.FlushLargestColumnFamily()); case offheap_objects: return new NativePool(heapLimit, offHeapLimit, DatabaseDescriptor.getMemtableCleanupThreshold(), new ColumnFamilyStore.FlushLargestColumnFamily()); default: throw new AssertionError(); } } private static final int ROW_OVERHEAD_HEAP_SIZE = estimateRowOverhead(Integer.parseInt(System.getProperty("cassandra.memtable_row_overhead_computation_step", "100000"))); private final MemtableAllocator allocator; private final AtomicLong liveDataSize = new AtomicLong(0); private final AtomicLong currentOperations = new AtomicLong(0); // the write barrier for directing writes to this memtable during a switch private volatile OpOrder.Barrier writeBarrier; // the precise upper bound of CommitLogPosition owned by this memtable private volatile AtomicReference<CommitLogPosition> commitLogUpperBound; // the precise lower bound of CommitLogPosition owned by this memtable; equal to its predecessor's commitLogUpperBound private AtomicReference<CommitLogPosition> commitLogLowerBound; // The approximate lower bound by this memtable; must be <= commitLogLowerBound once our predecessor // has been finalised, and this is enforced in the ColumnFamilyStore.setCommitLogUpperBound private final CommitLogPosition approximateCommitLogLowerBound = CommitLog.instance.getCurrentPosition(); public int compareTo(Memtable that) { return this.approximateCommitLogLowerBound.compareTo(that.approximateCommitLogLowerBound); } public static final class LastCommitLogPosition extends CommitLogPosition { public LastCommitLogPosition(CommitLogPosition copy) { super(copy.segmentId, copy.position); } } // We index the memtable by PartitionPosition only for the purpose of being able // to select key range using Token.KeyBound. However put() ensures that we // actually only store DecoratedKey. private final ConcurrentNavigableMap<PartitionPosition, AtomicBTreePartition> partitions = new ConcurrentSkipListMap<>(); public final ColumnFamilyStore cfs; private final long creationNano = System.nanoTime(); // The smallest timestamp for all partitions stored in this memtable private long minTimestamp = Long.MAX_VALUE; // Record the comparator of the CFS at the creation of the memtable. This // is only used when a user update the CF comparator, to know if the // memtable was created with the new or old comparator. public final ClusteringComparator initialComparator; private final ColumnsCollector columnsCollector; private final StatsCollector statsCollector = new StatsCollector(); // only to be used by init(), to setup the very first memtable for the cfs public Memtable(AtomicReference<CommitLogPosition> commitLogLowerBound, ColumnFamilyStore cfs) { this.cfs = cfs; this.commitLogLowerBound = commitLogLowerBound; this.allocator = MEMORY_POOL.newAllocator(); this.initialComparator = cfs.metadata().comparator; this.cfs.scheduleFlush(); this.columnsCollector = new ColumnsCollector(cfs.metadata().regularAndStaticColumns()); } // ONLY to be used for testing, to create a mock Memtable @VisibleForTesting public Memtable(TableMetadata metadata) { this.initialComparator = metadata.comparator; this.cfs = null; this.allocator = null; this.columnsCollector = new ColumnsCollector(metadata.regularAndStaticColumns()); } public MemtableAllocator getAllocator() { return allocator; } public long getLiveDataSize() { return liveDataSize.get(); } public long getOperations() { return currentOperations.get(); } @VisibleForTesting public void setDiscarding(OpOrder.Barrier writeBarrier, AtomicReference<CommitLogPosition> commitLogUpperBound) { assert this.writeBarrier == null; this.commitLogUpperBound = commitLogUpperBound; this.writeBarrier = writeBarrier; allocator.setDiscarding(); } void setDiscarded() { allocator.setDiscarded(); } // decide if this memtable should take the write, or if it should go to the next memtable public boolean accepts(OpOrder.Group opGroup, CommitLogPosition commitLogPosition) { // if the barrier hasn't been set yet, then this memtable is still taking ALL writes OpOrder.Barrier barrier = this.writeBarrier; if (barrier == null) return true; // if the barrier has been set, but is in the past, we are definitely destined for a future memtable if (!barrier.isAfter(opGroup)) return false; // if we aren't durable we are directed only by the barrier if (commitLogPosition == null) return true; while (true) { // otherwise we check if we are in the past/future wrt the CL boundary; // if the boundary hasn't been finalised yet, we simply update it to the max of // its current value and ours; if it HAS been finalised, we simply accept its judgement // this permits us to coordinate a safe boundary, as the boundary choice is made // atomically wrt our max() maintenance, so an operation cannot sneak into the past CommitLogPosition currentLast = commitLogUpperBound.get(); if (currentLast instanceof LastCommitLogPosition) return currentLast.compareTo(commitLogPosition) >= 0; if (currentLast != null && currentLast.compareTo(commitLogPosition) >= 0) return true; if (commitLogUpperBound.compareAndSet(currentLast, commitLogPosition)) return true; } } public CommitLogPosition getCommitLogLowerBound() { return commitLogLowerBound.get(); } public CommitLogPosition getCommitLogUpperBound() { return commitLogUpperBound.get(); } public boolean isLive() { return allocator.isLive(); } public boolean isClean() { return partitions.isEmpty(); } public boolean mayContainDataBefore(CommitLogPosition position) { return approximateCommitLogLowerBound.compareTo(position) < 0; } /** * @return true if this memtable is expired. Expiration time is determined by CF's memtable_flush_period_in_ms. */ public boolean isExpired() { int period = cfs.metadata().params.memtableFlushPeriodInMs; return period > 0 && (System.nanoTime() - creationNano >= TimeUnit.MILLISECONDS.toNanos(period)); } /** * Should only be called by ColumnFamilyStore.apply via Keyspace.apply, which supplies the appropriate * OpOrdering. * * commitLogSegmentPosition should only be null if this is a secondary index, in which case it is *expected* to be null */ long put(PartitionUpdate update, UpdateTransaction indexer, OpOrder.Group opGroup) { AtomicBTreePartition previous = partitions.get(update.partitionKey()); long initialSize = 0; if (previous == null) { final DecoratedKey cloneKey = allocator.clone(update.partitionKey(), opGroup); AtomicBTreePartition empty = new AtomicBTreePartition(cfs.metadata, cloneKey, allocator); // We'll add the columns later. This avoids wasting works if we get beaten in the putIfAbsent previous = partitions.putIfAbsent(cloneKey, empty); if (previous == null) { previous = empty; // allocate the row overhead after the fact; this saves over allocating and having to free after, but // means we can overshoot our declared limit. int overhead = (int) (cloneKey.getToken().getHeapSize() + ROW_OVERHEAD_HEAP_SIZE); allocator.onHeap().allocate(overhead, opGroup); initialSize = 8; } } long[] pair = previous.addAllWithSizeDelta(update, opGroup, indexer); minTimestamp = Math.min(minTimestamp, previous.stats().minTimestamp); liveDataSize.addAndGet(initialSize + pair[0]); columnsCollector.update(update.columns()); statsCollector.update(update.stats()); currentOperations.addAndGet(update.operationCount()); return pair[1]; } public int partitionCount() { return partitions.size(); } public List<FlushRunnable> flushRunnables(LifecycleTransaction txn) { List<Range<Token>> localRanges = Range.sort(StorageService.instance.getLocalRanges(cfs.keyspace.getName())); if (!cfs.getPartitioner().splitter().isPresent() || localRanges.isEmpty()) return Collections.singletonList(new FlushRunnable(txn)); return createFlushRunnables(localRanges, txn); } private List<FlushRunnable> createFlushRunnables(List<Range<Token>> localRanges, LifecycleTransaction txn) { assert cfs.getPartitioner().splitter().isPresent(); Directories.DataDirectory[] locations = cfs.getDirectories().getWriteableLocations(); List<PartitionPosition> boundaries = StorageService.getDiskBoundaries(localRanges, cfs.getPartitioner(), locations); List<FlushRunnable> runnables = new ArrayList<>(boundaries.size()); PartitionPosition rangeStart = cfs.getPartitioner().getMinimumToken().minKeyBound(); try { for (int i = 0; i < boundaries.size(); i++) { PartitionPosition t = boundaries.get(i); runnables.add(new FlushRunnable(rangeStart, t, locations[i], txn)); rangeStart = t; } return runnables; } catch (Throwable e) { throw Throwables.propagate(abortRunnables(runnables, e)); } } public Throwable abortRunnables(List<FlushRunnable> runnables, Throwable t) { if (runnables != null) for (FlushRunnable runnable : runnables) t = runnable.writer.abort(t); return t; } public String toString() { return String.format("Memtable-%s@%s(%s serialized bytes, %s ops, %.0f%%/%.0f%% of on/off-heap limit)", cfs.name, hashCode(), FBUtilities.prettyPrintMemory(liveDataSize.get()), currentOperations, 100 * allocator.onHeap().ownershipRatio(), 100 * allocator.offHeap().ownershipRatio()); } public MemtableUnfilteredPartitionIterator makePartitionIterator(final ColumnFilter columnFilter, final DataRange dataRange) { AbstractBounds<PartitionPosition> keyRange = dataRange.keyRange(); boolean startIsMin = keyRange.left.isMinimum(); boolean stopIsMin = keyRange.right.isMinimum(); boolean isBound = keyRange instanceof Bounds; boolean includeStart = isBound || keyRange instanceof IncludingExcludingBounds; boolean includeStop = isBound || keyRange instanceof Range; Map<PartitionPosition, AtomicBTreePartition> subMap; if (startIsMin) subMap = stopIsMin ? partitions : partitions.headMap(keyRange.right, includeStop); else subMap = stopIsMin ? partitions.tailMap(keyRange.left, includeStart) : partitions.subMap(keyRange.left, includeStart, keyRange.right, includeStop); int minLocalDeletionTime = Integer.MAX_VALUE; // avoid iterating over the memtable if we purge all tombstones if (cfs.getCompactionStrategyManager().onlyPurgeRepairedTombstones()) minLocalDeletionTime = findMinLocalDeletionTime(subMap.entrySet().iterator()); final Iterator<Map.Entry<PartitionPosition, AtomicBTreePartition>> iter = subMap.entrySet().iterator(); return new MemtableUnfilteredPartitionIterator(cfs, iter, minLocalDeletionTime, columnFilter, dataRange); } private int findMinLocalDeletionTime(Iterator<Map.Entry<PartitionPosition, AtomicBTreePartition>> iterator) { int minLocalDeletionTime = Integer.MAX_VALUE; while (iterator.hasNext()) { Map.Entry<PartitionPosition, AtomicBTreePartition> entry = iterator.next(); minLocalDeletionTime = Math.min(minLocalDeletionTime, entry.getValue().stats().minLocalDeletionTime); } return minLocalDeletionTime; } public Partition getPartition(DecoratedKey key) { return partitions.get(key); } public long getMinTimestamp() { return minTimestamp; } /** * For testing only. Give this memtable too big a size to make it always fail flushing. */ @VisibleForTesting public void makeUnflushable() { liveDataSize.addAndGet(1L * 1024 * 1024 * 1024 * 1024 * 1024); } class FlushRunnable implements Callable<SSTableMultiWriter> { private final long estimatedSize; private final ConcurrentNavigableMap<PartitionPosition, AtomicBTreePartition> toFlush; private final boolean isBatchLogTable; private final SSTableMultiWriter writer; // keeping these to be able to log what we are actually flushing private final PartitionPosition from; private final PartitionPosition to; FlushRunnable(PartitionPosition from, PartitionPosition to, Directories.DataDirectory flushLocation, LifecycleTransaction txn) { this(partitions.subMap(from, to), flushLocation, from, to, txn); } FlushRunnable(LifecycleTransaction txn) { this(partitions, null, null, null, txn); } FlushRunnable(ConcurrentNavigableMap<PartitionPosition, AtomicBTreePartition> toFlush, Directories.DataDirectory flushLocation, PartitionPosition from, PartitionPosition to, LifecycleTransaction txn) { this.toFlush = toFlush; this.from = from; this.to = to; long keySize = 0; for (PartitionPosition key : toFlush.keySet()) { // make sure we don't write non-sensical keys assert key instanceof DecoratedKey; keySize += ((DecoratedKey) key).getKey().remaining(); } estimatedSize = (long) ((keySize // index entries + keySize // keys in data file + liveDataSize.get()) // data * 1.2); // bloom filter and row index overhead this.isBatchLogTable = cfs.name.equals(SystemKeyspace.BATCHES) && cfs.keyspace.getName().equals(SchemaConstants.SYSTEM_KEYSPACE_NAME); if (flushLocation == null) writer = createFlushWriter(txn, cfs.newSSTableDescriptor(getDirectories().getWriteableLocationAsFile(estimatedSize)), columnsCollector.get(), statsCollector.get()); else writer = createFlushWriter(txn, cfs.newSSTableDescriptor(getDirectories().getLocationForDisk(flushLocation)), columnsCollector.get(), statsCollector.get()); } protected Directories getDirectories() { return cfs.getDirectories(); } private void writeSortedContents() { logger.debug("Writing {}, flushed range = ({}, {}]", Memtable.this.toString(), from, to); boolean trackContention = logger.isTraceEnabled(); int heavilyContendedRowCount = 0; // (we can't clear out the map as-we-go to free up memory, // since the memtable is being used for queries in the "pending flush" category) for (AtomicBTreePartition partition : toFlush.values()) { // Each batchlog partition is a separate entry in the log. And for an entry, we only do 2 // operations: 1) we insert the entry and 2) we delete it. Further, BL data is strictly local, // we don't need to preserve tombstones for repair. So if both operation are in this // memtable (which will almost always be the case if there is no ongoing failure), we can // just skip the entry (CASSANDRA-4667). if (isBatchLogTable && !partition.partitionLevelDeletion().isLive() && partition.hasRows()) continue; if (trackContention && partition.usePessimisticLocking()) heavilyContendedRowCount++; if (!partition.isEmpty()) { try (UnfilteredRowIterator iter = partition.unfilteredIterator()) { writer.append(iter); } } } long bytesFlushed = writer.getFilePointer(); logger.debug("Completed flushing {} ({}) for commitlog position {}", writer.getFilename(), FBUtilities.prettyPrintMemory(bytesFlushed), commitLogUpperBound); // Update the metrics cfs.metric.bytesFlushed.inc(bytesFlushed); if (heavilyContendedRowCount > 0) logger.trace("High update contention in {}/{} partitions of {} ", heavilyContendedRowCount, toFlush.size(), Memtable.this); } public SSTableMultiWriter createFlushWriter(LifecycleTransaction txn, Descriptor descriptor, RegularAndStaticColumns columns, EncodingStats stats) { MetadataCollector sstableMetadataCollector = new MetadataCollector(cfs.metadata().comparator) .commitLogIntervals(new IntervalSet<>(commitLogLowerBound.get(), commitLogUpperBound.get())); return cfs.createSSTableMultiWriter(descriptor, toFlush.size(), ActiveRepairService.UNREPAIRED_SSTABLE, ActiveRepairService.NO_PENDING_REPAIR, sstableMetadataCollector, new SerializationHeader(true, cfs.metadata(), columns, stats), txn); } @Override public SSTableMultiWriter call() { writeSortedContents(); return writer; } } private static int estimateRowOverhead(final int count) { // calculate row overhead try (final OpOrder.Group group = new OpOrder().start()) { int rowOverhead; MemtableAllocator allocator = MEMORY_POOL.newAllocator(); ConcurrentNavigableMap<PartitionPosition, Object> partitions = new ConcurrentSkipListMap<>(); final Object val = new Object(); for (int i = 0 ; i < count ; i++) partitions.put(allocator.clone(new BufferDecoratedKey(new LongToken(i), ByteBufferUtil.EMPTY_BYTE_BUFFER), group), val); double avgSize = ObjectSizes.measureDeep(partitions) / (double) count; rowOverhead = (int) ((avgSize - Math.floor(avgSize)) < 0.05 ? Math.floor(avgSize) : Math.ceil(avgSize)); rowOverhead -= ObjectSizes.measureDeep(new LongToken(0)); rowOverhead += AtomicBTreePartition.EMPTY_SIZE; allocator.setDiscarding(); allocator.setDiscarded(); return rowOverhead; } } public static class MemtableUnfilteredPartitionIterator extends AbstractUnfilteredPartitionIterator { private final ColumnFamilyStore cfs; private final Iterator<Map.Entry<PartitionPosition, AtomicBTreePartition>> iter; private final int minLocalDeletionTime; private final ColumnFilter columnFilter; private final DataRange dataRange; public MemtableUnfilteredPartitionIterator(ColumnFamilyStore cfs, Iterator<Map.Entry<PartitionPosition, AtomicBTreePartition>> iter, int minLocalDeletionTime, ColumnFilter columnFilter, DataRange dataRange) { this.cfs = cfs; this.iter = iter; this.minLocalDeletionTime = minLocalDeletionTime; this.columnFilter = columnFilter; this.dataRange = dataRange; } public int getMinLocalDeletionTime() { return minLocalDeletionTime; } public TableMetadata metadata() { return cfs.metadata(); } public boolean hasNext() { return iter.hasNext(); } public UnfilteredRowIterator next() { Map.Entry<PartitionPosition, AtomicBTreePartition> entry = iter.next(); // Actual stored key should be true DecoratedKey assert entry.getKey() instanceof DecoratedKey; DecoratedKey key = (DecoratedKey)entry.getKey(); ClusteringIndexFilter filter = dataRange.clusteringIndexFilter(key); return filter.getUnfilteredRowIterator(columnFilter, entry.getValue()); } } private static class ColumnsCollector { private final HashMap<ColumnMetadata, AtomicBoolean> predefined = new HashMap<>(); private final ConcurrentSkipListSet<ColumnMetadata> extra = new ConcurrentSkipListSet<>(); ColumnsCollector(RegularAndStaticColumns columns) { for (ColumnMetadata def : columns.statics) predefined.put(def, new AtomicBoolean()); for (ColumnMetadata def : columns.regulars) predefined.put(def, new AtomicBoolean()); } public void update(RegularAndStaticColumns columns) { for (ColumnMetadata s : columns.statics) update(s); for (ColumnMetadata r : columns.regulars) update(r); } private void update(ColumnMetadata definition) { AtomicBoolean present = predefined.get(definition); if (present != null) { if (!present.get()) present.set(true); } else { extra.add(definition); } } public RegularAndStaticColumns get() { RegularAndStaticColumns.Builder builder = RegularAndStaticColumns.builder(); for (Map.Entry<ColumnMetadata, AtomicBoolean> e : predefined.entrySet()) if (e.getValue().get()) builder.add(e.getKey()); return builder.addAll(extra).build(); } } private static class StatsCollector { private final AtomicReference<EncodingStats> stats = new AtomicReference<>(EncodingStats.NO_STATS); public void update(EncodingStats newStats) { while (true) { EncodingStats current = stats.get(); EncodingStats updated = current.mergeWith(newStats); if (stats.compareAndSet(current, updated)) return; } } public EncodingStats get() { return stats.get(); } } }