/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.ide.common.vectordrawable; import java.awt.geom.Path2D; import java.util.logging.Level; import java.util.logging.Logger; /** * Given an array of VdPath.Node, generate a Path2D object. * In another word, this is the engine which converts the pathData into * a Path2D object, which is able to draw on Swing components. * The logic and math here are the same as PathParser.java in framework. */ class VdNodeRender { private static Logger logger = Logger.getLogger(VdNodeRender.class .getSimpleName()); public static void creatPath(VdPath.Node[] node, Path2D path) { float[] current = new float[6]; char lastCmd = ' '; for (int i = 0; i < node.length; i++) { addCommand(path, current, node[i].type, lastCmd,node[i].params); lastCmd = node[i].type; } } private static void addCommand(Path2D path, float[] current, char cmd, char lastCmd, float[] val) { int incr = 2; float cx = current[0]; float cy = current[1]; float cpx = current[2]; float cpy = current[3]; float loopX = current[4]; float loopY = current[5]; switch (cmd) { case 'z': case 'Z': path.closePath(); cx = loopX; cy = loopY; case 'm': case 'M': case 'l': case 'L': case 't': case 'T': incr = 2; break; case 'h': case 'H': case 'v': case 'V': incr = 1; break; case 'c': case 'C': incr = 6; break; case 's': case 'S': case 'q': case 'Q': incr = 4; break; case 'a': case 'A': incr = 7; } for (int k = 0; k < val.length; k += incr) { boolean reflectCtrl = false; float tempReflectedX, tempReflectedY; switch (cmd) { case 'm': cx += val[k + 0]; cy += val[k + 1]; path.moveTo(cx, cy); loopX = cx; loopY = cy; break; case 'M': cx = val[k + 0]; cy = val[k + 1]; path.moveTo(cx, cy); loopX = cx; loopY = cy; break; case 'l': cx += val[k + 0]; cy += val[k + 1]; path.lineTo(cx, cy); break; case 'L': cx = val[k + 0]; cy = val[k + 1]; path.lineTo(cx, cy); break; case 'z': case 'Z': path.closePath(); cx = loopX; cy = loopY; break; case 'h': cx += val[k + 0]; path.lineTo(cx, cy); break; case 'H': path.lineTo(val[k + 0], cy); cx = val[k + 0]; break; case 'v': cy += val[k + 0]; path.lineTo(cx, cy); break; case 'V': path.lineTo(cx, val[k + 0]); cy = val[k + 0]; break; case 'c': path.curveTo(cx + val[k + 0], cy + val[k + 1], cx + val[k + 2], cy + val[k + 3], cx + val[k + 4], cy + val[k + 5]); cpx = cx + val[k + 2]; cpy = cy + val[k + 3]; cx += val[k + 4]; cy += val[k + 5]; break; case 'C': path.curveTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3], val[k + 4], val[k + 5]); cx = val[k + 4]; cy = val[k + 5]; cpx = val[k + 2]; cpy = val[k + 3]; break; case 's': reflectCtrl = (lastCmd == 'c' || lastCmd == 's' || lastCmd == 'C' || lastCmd == 'S'); path.curveTo(reflectCtrl ? 2 * cx - cpx : cx, reflectCtrl ? 2 * cy - cpy : cy, cx + val[k + 0], cy + val[k + 1], cx + val[k + 2], cy + val[k + 3]); cpx = cx + val[k + 0]; cpy = cy + val[k + 1]; cx += val[k + 2]; cy += val[k + 3]; break; case 'S': reflectCtrl = (lastCmd == 'c' || lastCmd == 's' || lastCmd == 'C' || lastCmd == 'S'); path.curveTo(reflectCtrl ? 2 * cx - cpx : cx, reflectCtrl ? 2 * cy - cpy : cy, val[k + 0], val[k + 1], val[k + 2], val[k + 3]); cpx = (val[k + 0]); cpy = (val[k + 1]); cx = val[k + 2]; cy = val[k + 3]; break; case 'q': path.quadTo(cx + val[k + 0], cy + val[k + 1], cx + val[k + 2], cy + val[k + 3]); cpx = cx + val[k + 0]; cpy = cy + val[k + 1]; // Note that we have to update cpx first, since cx will be updated here. cx += val[k + 2]; cy += val[k + 3]; break; case 'Q': path.quadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]); cx = val[k + 2]; cy = val[k + 3]; cpx = val[k + 0]; cpy = val[k + 1]; break; case 't': reflectCtrl = (lastCmd == 'q' || lastCmd == 't' || lastCmd == 'Q' || lastCmd == 'T'); tempReflectedX = reflectCtrl ? 2 * cx - cpx : cx; tempReflectedY = reflectCtrl ? 2 * cy - cpy : cy; path.quadTo(tempReflectedX, tempReflectedY, cx + val[k + 0], cy + val[k + 1]); cpx = tempReflectedX; cpy = tempReflectedY; cx += val[k + 0]; cy += val[k + 1]; break; case 'T': reflectCtrl = (lastCmd == 'q' || lastCmd == 't' || lastCmd == 'Q' || lastCmd == 'T'); tempReflectedX = reflectCtrl ? 2 * cx - cpx : cx; tempReflectedY = reflectCtrl ? 2 * cy - cpy : cy; path.quadTo(tempReflectedX, tempReflectedY, val[k + 0], val[k + 1]); cx = val[k + 0]; cy = val[k + 1]; cpx = tempReflectedX; cpy = tempReflectedY; break; case 'a': // (rx ry x-axis-rotation large-arc-flag sweep-flag x y) drawArc(path, cx, cy, val[k + 5] + cx, val[k + 6] + cy, val[k + 0], val[k + 1], val[k + 2], val[k + 3] != 0, val[k + 4] != 0); cx += val[k + 5]; cy += val[k + 6]; cpx = cx; cpy = cy; break; case 'A': drawArc(path, cx, cy, val[k + 5], val[k + 6], val[k + 0], val[k + 1], val[k + 2], val[k + 3] != 0, val[k + 4] != 0); cx = val[k + 5]; cy = val[k + 6]; cpx = cx; cpy = cy; break; } lastCmd = cmd; } current[0] = cx; current[1] = cy; current[2] = cpx; current[3] = cpy; current[4] = loopX; current[5] = loopY; } private static void drawArc(Path2D p, float x0, float y0, float x1, float y1, float a, float b, float theta, boolean isMoreThanHalf, boolean isPositiveArc) { logger.log(Level.FINE, "(" + x0 + "," + y0 + ")-(" + x1 + "," + y1 + ") {" + a + " " + b + "}"); /* Convert rotation angle from degrees to radians */ double thetaD = theta * Math.PI / 180.0f; /* Pre-compute rotation matrix entries */ double cosTheta = Math.cos(thetaD); double sinTheta = Math.sin(thetaD); /* Transform (x0, y0) and (x1, y1) into unit space */ /* using (inverse) rotation, followed by (inverse) scale */ double x0p = (x0 * cosTheta + y0 * sinTheta) / a; double y0p = (-x0 * sinTheta + y0 * cosTheta) / b; double x1p = (x1 * cosTheta + y1 * sinTheta) / a; double y1p = (-x1 * sinTheta + y1 * cosTheta) / b; logger.log(Level.FINE, "unit space (" + x0p + "," + y0p + ")-(" + x1p + "," + y1p + ")"); /* Compute differences and averages */ double dx = x0p - x1p; double dy = y0p - y1p; double xm = (x0p + x1p) / 2; double ym = (y0p + y1p) / 2; /* Solve for intersecting unit circles */ double dsq = dx * dx + dy * dy; if (dsq == 0.0) { logger.log(Level.FINE, " Points are coincident"); return; /* Points are coincident */ } double disc = 1.0 / dsq - 1.0 / 4.0; if (disc < 0.0) { logger.log(Level.FINE, "Points are too far apart " + dsq); float adjust = (float) (Math.sqrt(dsq) / 1.99999); drawArc(p, x0, y0, x1, y1, a * adjust, b * adjust, theta, isMoreThanHalf, isPositiveArc); return; /* Points are too far apart */ } double s = Math.sqrt(disc); double sdx = s * dx; double sdy = s * dy; double cx; double cy; if (isMoreThanHalf == isPositiveArc) { cx = xm - sdy; cy = ym + sdx; } else { cx = xm + sdy; cy = ym - sdx; } double eta0 = Math.atan2((y0p - cy), (x0p - cx)); logger.log(Level.FINE, "eta0 = Math.atan2( " + (y0p - cy) + " , " + (x0p - cx) + ") = " + Math.toDegrees(eta0)); double eta1 = Math.atan2((y1p - cy), (x1p - cx)); logger.log(Level.FINE, "eta1 = Math.atan2( " + (y1p - cy) + " , " + (x1p - cx) + ") = " + Math.toDegrees(eta1)); double sweep = (eta1 - eta0); if (isPositiveArc != (sweep >= 0)) { if (sweep > 0) { sweep -= 2 * Math.PI; } else { sweep += 2 * Math.PI; } } cx *= a; cy *= b; double tcx = cx; cx = cx * cosTheta - cy * sinTheta; cy = tcx * sinTheta + cy * cosTheta; logger.log( Level.FINE, "cx, cy, a, b, x0, y0, thetaD, eta0, sweep = " + cx + " , " + cy + " , " + a + " , " + b + " , " + x0 + " , " + y0 + " , " + Math.toDegrees(thetaD) + " , " + Math.toDegrees(eta0) + " , " + Math.toDegrees(sweep)); arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep); } /** * Converts an arc to cubic Bezier segments and records them in p. * * @param p The target for the cubic Bezier segments * @param cx The x coordinate center of the ellipse * @param cy The y coordinate center of the ellipse * @param a The radius of the ellipse in the horizontal direction * @param b The radius of the ellipse in the vertical direction * @param e1x E(eta1) x coordinate of the starting point of the arc * @param e1y E(eta2) y coordinate of the starting point of the arc * @param theta The angle that the ellipse bounding rectangle makes with the horizontal plane * @param start The start angle of the arc on the ellipse * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse */ private static void arcToBezier(Path2D p, double cx, double cy, double a, double b, double e1x, double e1y, double theta, double start, double sweep) { // Taken from equations at: // http://spaceroots.org/documents/ellipse/node8.html // and http://www.spaceroots.org/documents/ellipse/node22.html // Maximum of 45 degrees per cubic Bezier segment int numSegments = Math.abs((int) Math.ceil(sweep * 4 / Math.PI)); double eta1 = start; double cosTheta = Math.cos(theta); double sinTheta = Math.sin(theta); double cosEta1 = Math.cos(eta1); double sinEta1 = Math.sin(eta1); double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1); double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1); double anglePerSegment = sweep / numSegments; for (int i = 0; i < numSegments; i++) { double eta2 = eta1 + anglePerSegment; double sinEta2 = Math.sin(eta2); double cosEta2 = Math.cos(eta2); double e2x = cx + (a * cosTheta * cosEta2) - (b * sinTheta * sinEta2); double e2y = cy + (a * sinTheta * cosEta2) + (b * cosTheta * sinEta2); double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2; double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2; double tanDiff2 = Math.tan((eta2 - eta1) / 2); double alpha = Math.sin(eta2 - eta1) * (Math.sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3; double q1x = e1x + alpha * ep1x; double q1y = e1y + alpha * ep1y; double q2x = e2x - alpha * ep2x; double q2y = e2y - alpha * ep2y; p.curveTo((float) q1x, (float) q1y, (float) q2x, (float) q2y, (float) e2x, (float) e2y); eta1 = eta2; e1x = e2x; e1y = e2y; ep1x = ep2x; ep1y = ep2y; } } }