package squidpony.squidmath; import squidpony.annotation.Beta; import static squidpony.squidmath.PintRNG.determine; import static squidpony.squidmath.PintRNG.determineBounded; /** * Another experimental noise class. Extends PerlinNoise and should have similar quality, but can be faster and has less * periodic results. This is still considered experimental because the exact output may change in future versions, along * with the scale (potentially) and the parameters it takes. In general, {@link #noise(double, double)} and * {@link #noise(double, double, double)} should have similar appearance to {@link PerlinNoise#noise(double, double)} * and {@link PerlinNoise#noise(double, double, double)}, but are not forced to a zoomed-in scale like PerlinNoise makes * its results, are less likely to repeat sections of noise, and are also somewhat faster (a 20% speedup can be expected * over PerlinNoise using those two methods). Sound good? This also performs minimal (if any) arithmetic on 64-bit long * numbers, instead using double and int, a style that is ideal for GWT (this is true of PerlinNoise too). * <br> * Created by Tommy Ettinger on 12/14/2016. */ @Beta public class WhirlingNoise extends PerlinNoise implements Noise.Noise2D, Noise.Noise3D, Noise.Noise4D { public static final WhirlingNoise instance = new WhirlingNoise(); private static int fastFloor(double t) { return t >= 0 ? (int) t : (int) t - 1; } private static int fastFloor(float t) { return t >= 0 ? (int) t : (int) t - 1; } protected static final float root3 = 1.7320508f, root5 = 2.236068f, F2f = 0.5f * (root3 - 1f), G2f = (3f - root3) * 0.16666667f, F3f = 0.33333334f, G3f = 0.16666667f, F4f = (root5 - 1f) * 0.25f, G4f = (5f - root5) * 0.05f, unit1_4f = 0.70710678118f, unit1_8f = 0.38268343236f, unit3_8f = 0.92387953251f; protected static final float[][] grad2f = { {1f, 0f}, {-1f, 0f}, {0f, 1f}, {0f, -1f}, {unit3_8f, unit1_8f}, {unit3_8f, -unit1_8f}, {-unit3_8f, unit1_8f}, {-unit3_8f, -unit1_8f}, {unit1_4f, unit1_4f}, {unit1_4f, -unit1_4f}, {-unit1_4f, unit1_4f}, {-unit1_4f, -unit1_4f}, {unit1_8f, unit3_8f}, {unit1_8f, -unit3_8f}, {-unit1_8f, unit3_8f}, {-unit1_8f, -unit3_8f}}; protected static float dotf(final float g[], final float x, final float y) { return g[0] * x + g[1] * y; } protected static float dotf(final int g[], final float x, final float y, final float z) { return g[0] * x + g[1] * y + g[2] * z; } /* public static double interpolate(double t, double low, double high) { //debug //return 0; //linear //return t; //hermite //return t * t * (3 - 2 * t); //quintic //return t * t * t * (t * (t * 6 - 15) + 10); //t = (t + low + 0.5 - high) * 0.5; //t = (t < 0.5) ? t * low : 1.0 - ((1.0 - t) * high); //t = Math.pow(t, 1.0 + high - low); //return (t + 0.5 + high - low) * 0.5; return t * t * t * (t * (t * 6 - 15) + 10); } */ /** * 2D simplex noise. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result will be * different when passing the same arguments to {@link PerlinNoise#noise(double, double)} and this method. Roughly * 20-25% faster than the equivalent method in PerlinNoise, plus it has less chance of repetition in chunks because * it uses a pseudo-random function (curiously, {@link PintRNG#determine(int)}, which is optimized for the * limitations of GWT but is rather fast here) instead of a number chosen from a single 256-element array. * * @param x X input; works well if between 0.0 and 1.0, but anything is accepted * @param y Y input; works well if between 0.0 and 1.0, but anything is accepted * @return noise from -1.0 to 1.0, inclusive */ public double getNoise(final double x, final double y) { return noise(x, y); } /** * Identical to {@link #getNoise(double, double)}; ignores seed. * @param x X input; works well if between 0.0 and 1.0, but anything is accepted * @param y Y input; works well if between 0.0 and 1.0, but anything is accepted * @param seed ignored entirely. * @return noise from -1.0 to 1.0, inclusive */ public double getNoiseWithSeed(final double x, final double y, final int seed) { return noise(x, y); } /** * 3D simplex noise. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result will be * different when passing the same arguments to {@link PerlinNoise#noise(double, double, double)} and this method. * Roughly 20-25% faster than the equivalent method in PerlinNoise, plus it has less chance of repetition in chunks * because it uses a pseudo-random function (curiously, {@link PintRNG#determine(int)}, which is optimized for the * limitations of GWT but is rather fast here) instead of a number chosen from a single 256-element array. * @param x X input * @param y Y input * @param z Z input * @return noise from -1.0 to 1.0, inclusive */ public double getNoise(final double x, final double y, final double z) { return noise(x, y, z); } /** * Identical to {@link #getNoise(double, double, double)}; ignores seed. * @param x X input * @param y Y input * @param z Z input * @param seed ignored entirely. * @return noise from -1.0 to 1.0, inclusive */ public double getNoiseWithSeed(final double x, final double y, final double z, final int seed) { return noise(x, y, z); } /** * 4D simplex noise. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result will be * different when passing the same arguments to {@link PerlinNoise#noise(double, double, double)} and this method. * Roughly 20-25% faster than the equivalent method in PerlinNoise, plus it has less chance of repetition in chunks * because it uses a pseudo-random function (curiously, {@link PintRNG#determine(int)}, which is optimized for the * limitations of GWT but is rather fast here) instead of a number chosen from a single 256-element array. * @param x X input * @param y Y input * @param z Z input * @param w W input (fourth-dimension) * @return noise from -1.0 to 1.0, inclusive */ public double getNoise(final double x, final double y, final double z, final double w) { return noise(x, y, z, w); } /** * Identical to {@link #getNoise(double, double, double, double)}; ignores seed. * @param x X input * @param y Y input * @param z Z input * @param w W input (fourth-dimension) * @param seed ignored entirely. * @return noise from -1.0 to 1.0, inclusive */ public double getNoiseWithSeed(final double x, final double y, final double z, final double w, final int seed) { return noise(x, y, z, w); } /** * 2D simplex noise. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result will be * different when passing the same arguments to {@link PerlinNoise#noise(double, double)} and this method. Roughly * 20-25% faster than the equivalent method in PerlinNoise, plus it has less chance of repetition in chunks because * it uses a pseudo-random function (curiously, {@link PintRNG#determine(int)}, which is optimized for the * limitations of GWT but is rather fast here) instead of a number chosen from a single 256-element array. * * @param xin X input; works well if between 0.0 and 1.0, but anything is accepted * @param yin Y input; works well if between 0.0 and 1.0, but anything is accepted * @return noise from -1.0 to 1.0, inclusive */ public static double noise(final double xin, final double yin) { //xin *= epi; //yin *= epi; double noise0, noise1, noise2; // from the three corners // Skew the input space to determine which simplex cell we're in double skew = (xin + yin) * F2; // Hairy factor for 2D int i = fastFloor(xin + skew); int j = fastFloor(yin + skew); double t = (i + j) * G2; double X0 = i - t; // Unskew the cell origin back to (x,y) space double Y0 = j - t; double x0 = xin - X0; // The x,y distances from the cell origin double y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) // coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), // where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) // unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) // unskewed coords double y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners /* int ii = i & 255; int jj = j & 255; int gi0 = perm[ii + perm[jj]] & 15; int gi1 = perm[ii + i1 + perm[jj + j1]] & 15; int gi2 = perm[ii + 1 + perm[jj + 1]] & 15; */ /* int hash = (int) rawNoise(i + (j * 0x9E3779B9), i + i1 + ((j + j1) * 0x9E3779B9), i + 1 + ((j + 1) * 0x9E3779B9), seed); int gi0 = hash & 15; int gi1 = (hash >>>= 4) & 15; int gi2 = (hash >>> 4) & 15; */ int gi0 = determine(i + determine(j)) & 15; int gi1 = determine(i + i1 + determine(j + j1)) & 15; int gi2 = determine(i + 1 + determine(j + 1)) & 15; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { noise0 = 0.0; } else { t0 *= t0; noise0 = t0 * t0 * dot(grad2[gi0], x0, y0); // for 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { noise1 = 0.0; } else { t1 *= t1; noise1 = t1 * t1 * dot(grad2[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { noise2 = 0.0; } else { t2 *= t2; noise2 = t2 * t2 * dot(grad2[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (noise0 + noise1 + noise2); } /** * 2D simplex noise returning a float; extremely similar to {@link #noise(double, double)}, but this may be slightly * faster or slightly slower. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result * will be different when passing the same arguments to {@link PerlinNoise#noise(double, double)} and this method. * * @param x x input; works well if between 0.0 and 1.0, but anything is accepted * @param y y input; works well if between 0.0 and 1.0, but anything is accepted * @return noise from -1.0 to 1.0, inclusive */ public static float noiseAlt(double x, double y) { //xin *= epi; //yin *= epi; float noise0, noise1, noise2; // from the three corners float xin = (float)x, yin = (float)y; // Skew the input space to determine which simplex cell we're in float skew = (xin + yin) * F2f; // Hairy factor for 2D int i = fastFloor(xin + skew); int j = fastFloor(yin + skew); float t = (i + j) * G2f; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = xin - X0; // The x,y distances from the cell origin float y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) // coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), // where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2f; // Offsets for middle corner in (x,y) // unskewed coords float y1 = y0 - j1 + G2f; float x2 = x0 - 1f + 2f * G2f; // Offsets for last corner in (x,y) // unskewed coords float y2 = y0 - 1f + 2f * G2f; // Work out the hashed gradient indices of the three simplex corners /* int ii = i & 255; int jj = j & 255; int gi0 = perm[ii + perm[jj]] & 15; int gi1 = perm[ii + i1 + perm[jj + j1]] & 15; int gi2 = perm[ii + 1 + perm[jj + 1]] & 15; */ /* int hash = (int) rawNoise(i + (j * 0x9E3779B9), i + i1 + ((j + j1) * 0x9E3779B9), i + 1 + ((j + 1) * 0x9E3779B9), seed); int gi0 = hash & 15; int gi1 = (hash >>>= 4) & 15; int gi2 = (hash >>> 4) & 15; */ int gi0 = PintRNG.determine(i + PintRNG.determine(j)) & 15; int gi1 = PintRNG.determine(i + i1 + PintRNG.determine(j + j1)) & 15; int gi2 = PintRNG.determine(i + 1 + PintRNG.determine(j + 1)) & 15; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0) { noise0 = 0f; } else { t0 *= t0; noise0 = t0 * t0 * dotf(grad2f[gi0], x0, y0); // for 2D gradient } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0) { noise1 = 0f; } else { t1 *= t1; noise1 = t1 * t1 * dotf(grad2f[gi1], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0) { noise2 = 0f; } else { t2 *= t2; noise2 = t2 * t2 * dotf(grad2f[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70f * (noise0 + noise1 + noise2); } /** * 3D simplex noise. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result will be * different when passing the same arguments to {@link PerlinNoise#noise(double, double, double)} and this method. * Roughly 20-25% faster than the equivalent method in PerlinNoise, plus it has less chance of repetition in chunks * because it uses a pseudo-random function (curiously, {@link PintRNG#determine(int)}, which is optimized for the * limitations of GWT but is rather fast here) instead of a number chosen from a single 256-element array. * @param xin X input * @param yin Y input * @param zin Z input * @return noise from -1.0 to 1.0, inclusive */ public static double noise(final double xin, final double yin, final double zin) { //xin *= epi; //yin *= epi; //zin *= epi; double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double s = (xin + yin + zin) * F3; // Very nice and simple skew // factor for 3D int i = fastFloor(xin + s); int j = fastFloor(yin + s); int k = fastFloor(zin + s); double t = (i + j + k) * G3; double X0 = i - t; // Unskew the cell origin back to (x,y,z) space double Y0 = j - t; double Z0 = k - t; double x0 = xin - X0; // The x,y,z distances from the cell origin double y0 = yin - Y0; double z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular // tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) // coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) // coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in // (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in // (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in // (x,y,z), where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) // coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + F3; // Offsets for third corner in // (x,y,z) coords double y2 = y0 - j2 + F3; double z2 = z0 - k2 + F3; double x3 = x0 - 0.5; // Offsets for last corner in // (x,y,z) coords double y3 = y0 - 0.5; double z3 = z0 - 0.5; // Work out the hashed gradient indices of the four simplex corners /* int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = perm[ii + perm[jj + perm[kk]]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12; int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12; */ int gi0 = determineBounded(i + determine(j + determine(k)), 12); int gi1 = determineBounded(i + i1 + determine(j + j1 + determine(k + k1)), 12); int gi2 = determineBounded(i + i2 + determine(j + j2 + determine(k + k2)), 12); int gi3 = determineBounded(i + 1 + determine(j + 1 + determine(k + 1)), 12); /* int hash = (int) rawNoise(i + ((j + k * 0x632BE5AB) * 0x9E3779B9), i + i1 + ((j + j1 + (k + k1) * 0x632BE5AB) * 0x9E3779B9), i + i2 + ((j + j2 + (k + k2) * 0x632BE5AB) * 0x9E3779B9), i + 1 + ((j + 1 + ((k + 1) * 0x632BE5AB)) * 0x9E3779B9), seed); int gi0 = (hash >>>= 4) % 12; int gi1 = (hash >>>= 4) % 12; int gi2 = (hash >>>= 4) % 12; int gi3 = (hash >>> 4) % 12; */ //int hash = (int) rawNoise(i, j, k, seed); //int gi0 = (hash >>>= 4) % 12, gi1 = (hash >>>= 4) % 12, gi2 = (hash >>>= 4) % 12, gi3 = (hash >>>= 4) % 12; // Calculate the contribution from the four corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0 * (n0 + n1 + n2 + n3); } /** * 3D simplex noise returning a float; extremely similar to {@link #noise(double, double, double)}, but this may * be slightly faster or slightly slower. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of * the result will be different when passing the same arguments to {@link PerlinNoise#noise(double, double, double)} * and this method. * * @param x X input * @param y Y input * @param z Z input * @return noise from -1.0 to 1.0, inclusive */ public static float noiseAlt(double x, double y, double z) { //xin *= epi; //yin *= epi; //zin *= epi; float xin = (float)x, yin = (float)y, zin = (float)z; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (xin + yin + zin) * F3f; // Very nice and simple skew // factor for 3D int i = fastFloor(xin + s); int j = fastFloor(yin + s); int k = fastFloor(zin + s); float t = (i + j + k) * G3f; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = xin - X0; // The x,y,z distances from the cell origin float y0 = yin - Y0; float z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular // tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) // coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) // coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in // (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in // (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in // (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3f; // Offsets for second corner in (x,y,z) // coords float y1 = y0 - j1 + G3f; float z1 = z0 - k1 + G3f; float x2 = x0 - i2 + F3f; // Offsets for third corner in // (x,y,z) coords float y2 = y0 - j2 + F3f; float z2 = z0 - k2 + F3f; float x3 = x0 - 0.5f; // Offsets for last corner in // (x,y,z) coords float y3 = y0 - 0.5f; float z3 = z0 - 0.5f; // Work out the hashed gradient indices of the four simplex corners /* int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = perm[ii + perm[jj + perm[kk]]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12; int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12; */ int gi0 = PintRNG.determineBounded(i + PintRNG.determine(j + PintRNG.determine(k)), 12); int gi1 = PintRNG.determineBounded(i + i1 + PintRNG.determine(j + j1 + PintRNG.determine(k + k1)), 12); int gi2 = PintRNG.determineBounded(i + i2 + PintRNG.determine(j + j2 + PintRNG.determine(k + k2)), 12); int gi3 = PintRNG.determineBounded(i + 1 + PintRNG.determine(j + 1 + PintRNG.determine(k + 1)), 12); /* int hash = (int) rawNoise(i + ((j + k * 0x632BE5AB) * 0x9E3779B9), i + i1 + ((j + j1 + (k + k1) * 0x632BE5AB) * 0x9E3779B9), i + i2 + ((j + j2 + (k + k2) * 0x632BE5AB) * 0x9E3779B9), i + 1 + ((j + 1 + ((k + 1) * 0x632BE5AB)) * 0x9E3779B9), seed); int gi0 = (hash >>>= 4) % 12; int gi1 = (hash >>>= 4) % 12; int gi2 = (hash >>>= 4) % 12; int gi3 = (hash >>> 4) % 12; */ //int hash = (int) rawNoise(i, j, k, seed); //int gi0 = (hash >>>= 4) % 12, gi1 = (hash >>>= 4) % 12, gi2 = (hash >>>= 4) % 12, gi3 = (hash >>>= 4) % 12; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0f; } else { t0 *= t0; n0 = t0 * t0 * dotf(grad3[gi0], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0f; } else { t1 *= t1; n1 = t1 * t1 * dotf(grad3[gi1], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0f; } else { t2 *= t2; n2 = t2 * t2 * dotf(grad3[gi2], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0f; } else { t3 *= t3; n3 = t3 * t3 * dotf(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32f * (n0 + n1 + n2 + n3); } /** * 4D simplex noise. Unlike {@link PerlinNoise}, uses its parameters verbatim, so the scale of the result will be * different when passing the same arguments to {@link PerlinNoise#noise(double, double, double, double)} and this * method. Roughly 20-25% faster than the equivalent method in PerlinNoise, plus it has less chance of repetition in * chunks because it uses a pseudo-random function (curiously, {@link PintRNG#determine(int)}, which is optimized * for the limitations of GWT but is rather fast here) instead of a number chosen from a single 256-element array. * @param x X input * @param y Y input * @param z Z input * @param w W input (fourth-dimensional) * @return noise from -1.0 to 1.0, inclusive */ public static double noise(double x, double y, double z, double w) { // The skewing and unskewing factors are hairy again for the 4D case // Skew the (x,y,z,w) space to determine which cell of 24 simplices // we're in double s = (x + y + z + w) * F4; // Factor for 4D skewing int i = fastFloor(x + s); int j = fastFloor(y + s); int k = fastFloor(z + s); int l = fastFloor(w + s); double t = (i + j + k + l) * G4; // Factor for 4D unskewing double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space double Y0 = j - t; double Z0 = k - t; double W0 = l - t; double x0 = x - X0; // The x,y,z,w distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; double w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to // describe. // To find out which of the 24 possible simplices we're in, we need // to // determine the magnitude ordering of x0, y0, z0 and w0. // The method below is a good way of finding the ordering of x,y,z,w // and // then find the correct traversal order for the simplex we’re in. // First, six pair-wise comparisons are performed between each // possible pair // of the four coordinates, and the results are used to add up binary // bits // for an integer index. int c = (x0 > y0 ? 32 : 0) | (x0 > z0 ? 16 : 0) | (y0 > z0 ? 8 : 0) | (x0 > w0 ? 4 : 0) | (y0 > w0 ? 2 : 0) | (z0 > w0 ? 1 : 0); // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some // order. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, // y<w and x<w // impossible. Only the 24 indices which have non-zero entries make // any sense. // We use a thresholding to set the coordinates in turn from the // largest magnitude. // The number 3 in the "simplex" array is at the position of the // largest coordinate. // The integer offsets for the second simplex corner int i1 = simplex[c][0] >= 3 ? 1 : 0; int j1 = simplex[c][1] >= 3 ? 1 : 0; int k1 = simplex[c][2] >= 3 ? 1 : 0; int l1 = simplex[c][3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest // coordinate. // The integer offsets for the third simplex corner int i2 = simplex[c][0] >= 2 ? 1 : 0; int j2 = simplex[c][1] >= 2 ? 1 : 0; int k2 = simplex[c][2] >= 2 ? 1 : 0; int l2 = simplex[c][3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest // coordinate. // The integer offsets for the fourth simplex corner int i3 = simplex[c][0] >= 1 ? 1 : 0; int j3 = simplex[c][1] >= 1 ? 1 : 0; int k3 = simplex[c][2] >= 1 ? 1 : 0; int l3 = simplex[c][3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to // look that up. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords double y2 = y0 - j2 + 2.0 * G4; double z2 = z0 - k2 + 2.0 * G4; double w2 = w0 - l2 + 2.0 * G4; double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords double y3 = y0 - j3 + 3.0 * G4; double z3 = z0 - k3 + 3.0 * G4; double w3 = w0 - l3 + 3.0 * G4; double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords double y4 = y0 - 1.0 + 4.0 * G4; double z4 = z0 - 1.0 + 4.0 * G4; double w4 = w0 - 1.0 + 4.0 * G4; int gi0 = determine(i + determine(j + determine(k + determine(l)))) & 31; int gi1 = determine(i + i1 + determine(j + j1 + determine(k + k1 + determine(l + l1)))) & 31; int gi2 = determine(i + i2 + determine(j + j2 + determine(k + k2 + determine(l + l2)))) & 31; int gi3 = determine(i + i3 + determine(j + j3 + determine(k + k3 + determine(l + l3)))) & 31; int gi4 = determine(i + 1 + determine(j + 1 + determine(k + 1 + determine(l + 1)))) & 31; // Noise contributions from the five corners are n0 to n4 // Calculate the contribution from the five corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0, n0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1, n1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2, n2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3, n3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4, n4; if (t4 < 0) { n4 = 0.0; } else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); } /* public static void main(String[] args) { long hash; for (int x = -8; x < 8; x++) { for (int y = -8; y < 8; y++) { hash = rawNoise(x, y, 1); System.out.println("x=" + x + " y=" + y); System.out.println("normal=" + (Float.intBitsToFloat(0x3F800000 | (int)(hash & 0x7FFFFF)) - 1.0)); System.out.println("tweaked=" + (Float.intBitsToFloat(0x40000000 | (int)(hash & 0x7FFFFF)) - 3.0)); System.out.println("half=" + (Float.intBitsToFloat(0x3F000000 | (int)(hash & 0x7FFFFF)) - 0.5)); } } } */ }