package squidpony.squidmath; /** * This is Ken Perlin's third revision of his noise function. It is sometimes * referred to as "Simplex Noise". Results are bound by (-1, 1) inclusive. * * * It is significantly faster than his earlier versions. This particular version * was originally from Stefan Gustavson. This is much preferred to the earlier * versions of Perlin Noise due to the reasons noted in the articles: * <ul> * <li>http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf</li> * <li>http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/ch02.pdf</li> * </ul> * But, Gustavson's paper is not without its own issues, particularly for 2D noise. * More detail is noted here, * http://stackoverflow.com/questions/18885440/why-does-simplex-noise-seem-to-have-more-artifacts-than-classic-perlin-noise#21568753 * and some changes have been made to 2D noise generation to reduce angular artifacts. * Specifically for the 2D gradient table, code based on Gustavson's paper used 12 * points, with some duplicates, and not all on the unit circle. In this version, * points are used on the unit circle starting at (1,0) and moving along the circle * in increments of 1.61803398875 radians, that is, the golden ratio phi, getting the * sin and cosine of 15 points after the starting point and storing them as constants. * This definitely doesn't have a noticeable 45 degree angle artifact, though it does * have, to a lesser extent, some other minor artifacts. * <br> * You can also consider {@link WhirlingNoise} as an alternative, which can be faster * and also reduces the likelihood of angular artifacts. WhirlingNoise does not scale its * input (it doesn't need to), so it won't produce the same results as PerlinNoise for the * same inputs, but it will produce similar shape, density, and aesthetic quality of noise. * @see WhirlingNoise A subclass that has a faster implementation and some different qualities. */ public class PerlinNoise { protected static final double phi = 1.61803398875, epi = 1.0 / Math.E / Math.PI, unit1_4 = 0.70710678118, unit1_8 = 0.38268343236, unit3_8 = 0.92387953251; protected static final double[][] grad2 = { {1, 0}, {-1, 0}, {0, 1}, {0, -1},/* {1, 0}, {-1, 0}, {0, 1}, {0, -1}, {1, 0}, {-1, 0}, {0, 1}, {0, -1}, {1, 0}, {-1, 0}, {0, 1}, {0, -1},*/ {unit3_8, unit1_8}, {unit3_8, -unit1_8}, {-unit3_8, unit1_8}, {-unit3_8, -unit1_8}, {unit1_4, unit1_4}, {unit1_4, -unit1_4}, {-unit1_4, unit1_4}, {-unit1_4, -unit1_4}, {unit1_8, unit3_8}, {unit1_8, -unit3_8}, {-unit1_8, unit3_8}, {-unit1_8, -unit3_8}}; protected static final double[][] phiGrad2 = { {1, 0}, {Math.cos(phi), Math.sin(phi)}, {Math.cos(phi*2), Math.sin(phi*2)}, {Math.cos(phi*3), Math.sin(phi*3)}, {Math.cos(phi*4), Math.sin(phi*4)}, {Math.cos(phi*5), Math.sin(phi*5)}, {Math.cos(phi*6), Math.sin(phi*6)}, {Math.cos(phi*7), Math.sin(phi*7)}, {Math.cos(phi*8), Math.sin(phi*8)}, {Math.cos(phi*9), Math.sin(phi*9)}, {Math.cos(phi*10), Math.sin(phi*10)}, {Math.cos(phi*11), Math.sin(phi*11)}, {Math.cos(phi*13), Math.sin(phi*12)}, {Math.cos(phi*13), Math.sin(phi*13)}, {Math.cos(phi*14), Math.sin(phi*14)}, {Math.cos(phi*15), Math.sin(phi*15)}, }; protected static final int[][] grad3 = {{1, 1, 0}, {-1, 1, 0}, {1, -1, 0}, {-1, -1, 0}, {1, 0, 1}, {-1, 0, 1}, {1, 0, -1}, {-1, 0, -1}, {0, 1, 1}, {0, -1, 1}, {0, 1, -1}, {0, -1, -1}}; protected static final int[][] grad4 = {{0, 1, 1, 1}, {0, 1, 1, -1}, {0, 1, -1, 1}, {0, 1, -1, -1}, {0, -1, 1, 1}, {0, -1, 1, -1}, {0, -1, -1, 1}, {0, -1, -1, -1}, {1, 0, 1, 1}, {1, 0, 1, -1}, {1, 0, -1, 1}, {1, 0, -1, -1}, {-1, 0, 1, 1}, {-1, 0, 1, -1}, {-1, 0, -1, 1}, {-1, 0, -1, -1}, {1, 1, 0, 1}, {1, 1, 0, -1}, {1, -1, 0, 1}, {1, -1, 0, -1}, {-1, 1, 0, 1}, {-1, 1, 0, -1}, {-1, -1, 0, 1}, {-1, -1, 0, -1}, {1, 1, 1, 0}, {1, 1, -1, 0}, {1, -1, 1, 0}, {1, -1, -1, 0}, {-1, 1, 1, 0}, {-1, 1, -1, 0}, {-1, -1, 1, 0}, {-1, -1, -1, 0}}; private static final int p[] = {151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180}; protected static final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0); protected static final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0; protected static final double F3 = 1.0 / 3.0; protected static final double G3 = 1.0 / 6.0; protected static final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0; protected static final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0; // To remove the need for index wrapping, double the permutation table // length protected static final int perm[] = new int[512]; static { for (int i = 0; i < 512; i++) { perm[i] = p[i & 255]; } } protected PerlinNoise() { } // A lookup table to traverse the simplex around a given point in 4D. // Details can be found where this table is used, in the 4D noise method. protected static final int simplex[][] = {{0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0}, {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0}, {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0}}; protected static double dot(double g[], double x, double y) { return g[0] * x + g[1] * y; } protected static double dot(int g[], double x, double y, double z) { return g[0] * x + g[1] * y + g[2] * z; } protected static double dot(int g[], double x, double y, double z, double w) { return g[0] * x + g[1] * y + g[2] * z + g[3] * w; } /** * 2D simplex noise. * This doesn't use its parameters verbatim; xin and yin are both effectively divided by * ({@link Math#E} * {@link Math#PI}), because without a step like that, any integer parameters would return 0 and * only doubles with a decimal component would produce actual noise. This step allows integers to be passed in a * arguments, and changes the cycle at which 0 is repeated to multiples of (E*PI). * * @param xin x input; works well if between 0.0 and 1.0, but anything is accepted * @param yin y input; works well if between 0.0 and 1.0, but anything is accepted * @return noise from -1.0 to 1.0, inclusive */ public static double noise(double xin, double yin) { xin *= epi; yin *= epi; double noise0, noise1, noise2; // from the three corners // Skew the input space to determine which simplex cell we're in double skew = (xin + yin) * F2; // Hairy factor for 2D int i = (int) Math.floor(xin + skew); int j = (int) Math.floor(yin + skew); double t = (i + j) * G2; double X0 = i - t; // Unskew the cell origin back to (x,y) space double Y0 = j - t; double x0 = xin - X0; // The x,y distances from the cell origin double y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) // coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), // where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) // unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) // unskewed coords double y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = perm[ii + perm[jj]] & 15; int gi1 = perm[ii + i1 + perm[jj + j1]] & 15; int gi2 = perm[ii + 1 + perm[jj + 1]] & 15; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { noise0 = 0.0; } else { t0 *= t0; noise0 = t0 * t0 * dot(phiGrad2[gi0], x0, y0); // (x,y) of grad3 used // for 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { noise1 = 0.0; } else { t1 *= t1; noise1 = t1 * t1 * dot(phiGrad2[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { noise2 = 0.0; } else { t2 *= t2; noise2 = t2 * t2 * dot(phiGrad2[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (noise0 + noise1 + noise2); } /** * 3D simplex noise. * * @param xin X input * @param yin Y input * @param zin Z input * @return noise from -1.0 to 1.0, inclusive */ public static double noise(double xin, double yin, double zin) { xin *= epi; yin *= epi; zin *= epi; double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double s = (xin + yin + zin) * F3; // Very nice and simple skew // factor for 3D int i = (int) Math.floor(xin + s); int j = (int) Math.floor(yin + s); int k = (int) Math.floor(zin + s); double t = (i + j + k) * G3; double X0 = i - t; // Unskew the cell origin back to (x,y,z) space double Y0 = j - t; double Z0 = k - t; double x0 = xin - X0; // The x,y,z distances from the cell origin double y0 = yin - Y0; double z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular // tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) // coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) // coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in // (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in // (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in // (x,y,z), where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) // coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in // (x,y,z) coords double y2 = y0 - j2 + 2.0 * G3; double z2 = z0 - k2 + 2.0 * G3; double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in // (x,y,z) coords double y3 = y0 - 1.0 + 3.0 * G3; double z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = perm[ii + perm[jj + perm[kk]]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12; int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12; // Calculate the contribution from the four corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0 * (n0 + n1 + n2 + n3); } /** * 4D simplex noise. * * @param x X position * @param y Y position * @param z Z position * @param w Fourth-dimensional position. It is I, the Fourth-Dimensional Ziltoid the Omniscient! * @return noise from -1.0 to 1.0, inclusive */ public static double noise(double x, double y, double z, double w) { x *= epi; y *= epi; z *= epi; w *= epi; // The skewing and unskewing factors are hairy again for the 4D case double n0, n1, n2, n3, n4; // Noise contributions from the five // corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices // we're in double s = (x + y + z + w) * F4; // Factor for 4D skewing int i = (int) Math.floor(x + s); int j = (int) Math.floor(y + s); int k = (int) Math.floor(z + s); int l = (int) Math.floor(w + s); double t = (i + j + k + l) * G4; // Factor for 4D unskewing double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space double Y0 = j - t; double Z0 = k - t; double W0 = l - t; double x0 = x - X0; // The x,y,z,w distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; double w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to // describe. // To find out which of the 24 possible simplices we're in, we need // to // determine the magnitude ordering of x0, y0, z0 and w0. // The method below is a good way of finding the ordering of x,y,z,w // and // then find the correct traversal order for the simplex we’re in. // First, six pair-wise comparisons are performed between each // possible pair // of the four coordinates, and the results are used to add up binary // bits // for an integer index. int c = (x0 > y0 ? 32 : 0) + (x0 > z0 ? 16 : 0) + (y0 > z0 ? 8 : 0 ) + (x0 > w0 ? 4 : 0 ) + (y0 > w0 ? 2 : 0 ) + (z0 > w0 ? 1 : 0 ); int i1, j1, k1, l1; // The integer offsets for the second simplex // corner int i2, j2, k2, l2; // The integer offsets for the third simplex // corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex // corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some // order. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, // y<w and x<w // impossible. Only the 24 indices which have non-zero entries make // any sense. // We use a thresholding to set the coordinates in turn from the // largest magnitude. // The number 3 in the "simplex" array is at the position of the // largest coordinate. i1 = simplex[c][0] >= 3 ? 1 : 0; j1 = simplex[c][1] >= 3 ? 1 : 0; k1 = simplex[c][2] >= 3 ? 1 : 0; l1 = simplex[c][3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest // coordinate. i2 = simplex[c][0] >= 2 ? 1 : 0; j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0; l2 = simplex[c][3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest // coordinate. i3 = simplex[c][0] >= 1 ? 1 : 0; j3 = simplex[c][1] >= 1 ? 1 : 0; k3 = simplex[c][2] >= 1 ? 1 : 0; l3 = simplex[c][3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to // look that up. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) // coords double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in // (x,y,z,w) coords double y2 = y0 - j2 + 2.0 * G4; double z2 = z0 - k2 + 2.0 * G4; double w2 = w0 - l2 + 2.0 * G4; double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in // (x,y,z,w) coords double y3 = y0 - j3 + 3.0 * G4; double z3 = z0 - k3 + 3.0 * G4; double w3 = w0 - l3 + 3.0 * G4; double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in // (x,y,z,w) coords double y4 = y0 - 1.0 + 4.0 * G4; double z4 = z0 - 1.0 + 4.0 * G4; double w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] & 31; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] & 31; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] & 31; int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] & 31; int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] & 31; // Calculate the contribution from the five corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) { n4 = 0.0; } else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); } }