package org.ripple.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import java.util.Random; import org.ripple.bouncycastle.math.ec.ECConstants; import org.ripple.bouncycastle.math.ec.ECCurve; import org.ripple.bouncycastle.math.ec.ECFieldElement; import org.ripple.bouncycastle.math.ec.ECMultiplier; import org.ripple.bouncycastle.math.ec.ECPoint; import org.ripple.bouncycastle.math.ec.WTauNafMultiplier; import org.ripple.bouncycastle.math.ec.ECCurve.AbstractF2m; import org.ripple.bouncycastle.util.encoders.Hex; public class SecT571K1Curve extends AbstractF2m { private static final int SecT571K1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE; protected SecT571K1Point infinity; public SecT571K1Curve() { super(571, 2, 5, 10); this.infinity = new SecT571K1Point(this, null, null); this.a = fromBigInteger(BigInteger.valueOf(0)); this.b = fromBigInteger(BigInteger.valueOf(1)); this.order = new BigInteger(1, Hex.decode("020000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001")); this.cofactor = BigInteger.valueOf(4); this.coord = SecT571K1_DEFAULT_COORDS; } protected ECCurve cloneCurve() { return new SecT571K1Curve(); } public boolean supportsCoordinateSystem(int coord) { switch (coord) { case COORD_LAMBDA_PROJECTIVE: return true; default: return false; } } protected ECMultiplier createDefaultMultiplier() { return new WTauNafMultiplier(); } public int getFieldSize() { return 571; } public ECFieldElement fromBigInteger(BigInteger x) { return new SecT571FieldElement(x); } protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, boolean withCompression) { return new SecT571K1Point(this, x, y, withCompression); } protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, boolean withCompression) { return new SecT571K1Point(this, x, y, zs, withCompression); } public ECPoint getInfinity() { return infinity; } public boolean isKoblitz() { return true; } /** * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2). * * @param yTilde * ~yp, an indication bit for the decompression of yp. * @param X1 * The field element xp. * @return the decompressed point. */ protected ECPoint decompressPoint(int yTilde, BigInteger X1) { ECFieldElement x = fromBigInteger(X1), y = null; if (x.isZero()) { y = b.sqrt(); } else { ECFieldElement beta = x.square().invert().multiply(b).add(a).add(x); ECFieldElement z = solveQuadraticEquation(beta); if (z != null) { if (z.testBitZero() != (yTilde == 1)) { z = z.addOne(); } switch (this.getCoordinateSystem()) { case COORD_LAMBDA_AFFINE: case COORD_LAMBDA_PROJECTIVE: { y = z.add(x); break; } default: { y = z.multiply(x); break; } } } } if (y == null) { throw new IllegalArgumentException("Invalid point compression"); } return this.createRawPoint(x, y, true); } /** * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62 * D.1.6) The other solution is <code>z + 1</code>. * * @param beta * The value to solve the quadratic equation for. * @return the solution for <code>z<sup>2</sup> + z = beta</code> or * <code>null</code> if no solution exists. */ private ECFieldElement solveQuadraticEquation(ECFieldElement beta) { if (beta.isZero()) { return beta; } ECFieldElement zeroElement = fromBigInteger(ECConstants.ZERO); ECFieldElement z = null; ECFieldElement gamma = null; Random rand = new Random(); do { ECFieldElement t = fromBigInteger(new BigInteger(571, rand)); z = zeroElement; ECFieldElement w = beta; for (int i = 1; i < 571; i++) { ECFieldElement w2 = w.square(); z = z.square().add(w2.multiply(t)); w = w2.add(beta); } if (!w.isZero()) { return null; } gamma = z.square().add(z); } while (gamma.isZero()); return z; } public int getM() { return 571; } public boolean isTrinomial() { return false; } public int getK1() { return 2; } public int getK2() { return 5; } public int getK3() { return 10; } }