package org.ripple.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import java.util.Random; import org.ripple.bouncycastle.asn1.x9.X9ECParameters; import org.ripple.bouncycastle.math.ec.ECConstants; import org.ripple.bouncycastle.math.ec.ECCurve; import org.ripple.bouncycastle.math.ec.ECFieldElement; import org.ripple.bouncycastle.math.ec.ECPoint; import org.ripple.bouncycastle.math.ec.ECCurve.AbstractF2m; import org.ripple.bouncycastle.util.encoders.Hex; public class SecT193R2Curve extends AbstractF2m { private static final int SecT193R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE; protected SecT193R2Point infinity; public SecT193R2Curve() { super(193, 15, 0, 0); this.infinity = new SecT193R2Point(this, null, null); this.a = fromBigInteger(new BigInteger(1, Hex.decode("0163F35A5137C2CE3EA6ED8667190B0BC43ECD69977702709B"))); this.b = fromBigInteger(new BigInteger(1, Hex.decode("00C9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE"))); this.order = new BigInteger(1, Hex.decode("010000000000000000000000015AAB561B005413CCD4EE99D5")); this.cofactor = BigInteger.valueOf(2); this.coord = SecT193R2_DEFAULT_COORDS; } protected ECCurve cloneCurve() { return new SecT193R2Curve(); } public boolean supportsCoordinateSystem(int coord) { switch (coord) { case COORD_LAMBDA_PROJECTIVE: return true; default: return false; } } public int getFieldSize() { return 193; } public ECFieldElement fromBigInteger(BigInteger x) { return new SecT193FieldElement(x); } protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, boolean withCompression) { return new SecT193R2Point(this, x, y, withCompression); } protected ECPoint createRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, boolean withCompression) { return new SecT193R2Point(this, x, y, zs, withCompression); } public ECPoint getInfinity() { return infinity; } public boolean isKoblitz() { return false; } /** * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2). * * @param yTilde * ~yp, an indication bit for the decompression of yp. * @param X1 * The field element xp. * @return the decompressed point. */ protected ECPoint decompressPoint(int yTilde, BigInteger X1) { ECFieldElement x = fromBigInteger(X1), y = null; if (x.isZero()) { y = b.sqrt(); } else { ECFieldElement beta = x.square().invert().multiply(b).add(a).add(x); ECFieldElement z = solveQuadraticEquation(beta); if (z != null) { if (z.testBitZero() != (yTilde == 1)) { z = z.addOne(); } switch (this.getCoordinateSystem()) { case COORD_LAMBDA_AFFINE: case COORD_LAMBDA_PROJECTIVE: { y = z.add(x); break; } default: { y = z.multiply(x); break; } } } } if (y == null) { throw new IllegalArgumentException("Invalid point compression"); } return this.createRawPoint(x, y, true); } /** * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62 * D.1.6) The other solution is <code>z + 1</code>. * * @param beta * The value to solve the quadratic equation for. * @return the solution for <code>z<sup>2</sup> + z = beta</code> or * <code>null</code> if no solution exists. */ private ECFieldElement solveQuadraticEquation(ECFieldElement beta) { if (beta.isZero()) { return beta; } ECFieldElement zeroElement = fromBigInteger(ECConstants.ZERO); ECFieldElement z = null; ECFieldElement gamma = null; Random rand = new Random(); do { ECFieldElement t = fromBigInteger(new BigInteger(193, rand)); z = zeroElement; ECFieldElement w = beta; for (int i = 1; i < 193; i++) { ECFieldElement w2 = w.square(); z = z.square().add(w2.multiply(t)); w = w2.add(beta); } if (!w.isZero()) { return null; } gamma = z.square().add(z); } while (gamma.isZero()); return z; } public int getM() { return 193; } public boolean isTrinomial() { return true; } public int getK1() { return 15; } public int getK2() { return 0; } public int getK3() { return 0; } }