/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.badlogic.gdx.utils;
import java.util.NoSuchElementException;
import com.badlogic.gdx.math.MathUtils;
/**
* An unordered set that uses int keys. This implementation uses cuckoo hashing
* using 3 hashes, random walking, and a small stash for problematic keys. No
* allocation is done except when growing the table size. <br>
* <br>
* This set performs very fast contains and remove (typically O(1), worst case
* O(log(n))). Add may be a bit slower, depending on hash collisions. Load
* factors greater than 0.91 greatly increase the chances the set will have to
* rehash to the next higher POT size.
*
* @author Nathan Sweet
*/
public class IntSet {
private static final int PRIME1 = 0xbe1f14b1;
private static final int PRIME2 = 0xb4b82e39;
private static final int PRIME3 = 0xced1c241;
private static final int EMPTY = 0;
public int size;
int[] keyTable;
int capacity, stashSize;
boolean hasZeroValue;
private float loadFactor;
private int hashShift, mask, threshold;
private int stashCapacity;
private int pushIterations;
private IntSetIterator iterator1, iterator2;
/**
* Creates a new sets with an initial capacity of 32 and a load factor of
* 0.8. This set will hold 25 items before growing the backing table.
*/
public IntSet() {
this(32, 0.8f);
}
/**
* Creates a new set with a load factor of 0.8. This set will hold
* initialCapacity * 0.8 items before growing the backing table.
*/
public IntSet(int initialCapacity) {
this(initialCapacity, 0.8f);
}
/**
* Creates a new set with the specified initial capacity and load factor.
* This set will hold initialCapacity * loadFactor items before growing the
* backing table.
*/
public IntSet(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
if (initialCapacity > 1 << 30)
throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
capacity = MathUtils.nextPowerOfTwo(initialCapacity);
if (loadFactor <= 0)
throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
this.loadFactor = loadFactor;
threshold = (int) (capacity * loadFactor);
mask = capacity - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2);
pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8);
keyTable = new int[capacity + stashCapacity];
}
/** Creates a new map identical to the specified map. */
public IntSet(IntSet map) {
this(map.capacity, map.loadFactor);
stashSize = map.stashSize;
System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.length);
size = map.size;
hasZeroValue = map.hasZeroValue;
}
/** Returns true if the key was not already in the set. */
public boolean add(int key) {
if (key == 0) {
if (hasZeroValue)
return false;
hasZeroValue = true;
size++;
return true;
}
int[] keyTable = this.keyTable;
// Check for existing keys.
int index1 = key & mask;
int key1 = keyTable[index1];
if (key1 == key)
return false;
int index2 = hash2(key);
int key2 = keyTable[index2];
if (key2 == key)
return false;
int index3 = hash3(key);
int key3 = keyTable[index3];
if (key3 == key)
return false;
// Find key in the stash.
for (int i = capacity, n = i + stashSize; i < n; i++)
if (keyTable[i] == key)
return false;
// Check for empty buckets.
if (key1 == EMPTY) {
keyTable[index1] = key;
if (size++ >= threshold)
resize(capacity << 1);
return true;
}
if (key2 == EMPTY) {
keyTable[index2] = key;
if (size++ >= threshold)
resize(capacity << 1);
return true;
}
if (key3 == EMPTY) {
keyTable[index3] = key;
if (size++ >= threshold)
resize(capacity << 1);
return true;
}
push(key, index1, key1, index2, key2, index3, key3);
return true;
}
public void addAll(IntArray array) {
addAll(array, 0, array.size);
}
public void addAll(IntArray array, int offset, int length) {
if (offset + length > array.size)
throw new IllegalArgumentException("offset + length must be <= size: " + offset + " + " + length + " <= " + array.size);
addAll(array.items, offset, length);
}
public void addAll(int... array) {
addAll(array, 0, array.length);
}
public void addAll(int[] array, int offset, int length) {
ensureCapacity(length);
for (int i = offset, n = i + length; i < n; i++)
add(array[i]);
}
public void addAll(IntSet set) {
ensureCapacity(set.size);
IntSetIterator iterator = set.iterator();
while (iterator.hasNext)
add(iterator.next());
}
/** Skips checks for existing keys. */
private void addResize(int key) {
if (key == 0) {
hasZeroValue = true;
return;
}
// Check for empty buckets.
int index1 = key & mask;
int key1 = keyTable[index1];
if (key1 == EMPTY) {
keyTable[index1] = key;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
int index2 = hash2(key);
int key2 = keyTable[index2];
if (key2 == EMPTY) {
keyTable[index2] = key;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
int index3 = hash3(key);
int key3 = keyTable[index3];
if (key3 == EMPTY) {
keyTable[index3] = key;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
push(key, index1, key1, index2, key2, index3, key3);
}
private void push(int insertKey, int index1, int key1, int index2, int key2, int index3, int key3) {
int[] keyTable = this.keyTable;
int mask = this.mask;
// Push keys until an empty bucket is found.
int evictedKey;
int i = 0, pushIterations = this.pushIterations;
do {
// Replace the key and value for one of the hashes.
switch (MathUtils.random(2)) {
case 0:
evictedKey = key1;
keyTable[index1] = insertKey;
break;
case 1:
evictedKey = key2;
keyTable[index2] = insertKey;
break;
default:
evictedKey = key3;
keyTable[index3] = insertKey;
break;
}
// If the evicted key hashes to an empty bucket, put it there and
// stop.
index1 = evictedKey & mask;
key1 = keyTable[index1];
if (key1 == EMPTY) {
keyTable[index1] = evictedKey;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
index2 = hash2(evictedKey);
key2 = keyTable[index2];
if (key2 == EMPTY) {
keyTable[index2] = evictedKey;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
index3 = hash3(evictedKey);
key3 = keyTable[index3];
if (key3 == EMPTY) {
keyTable[index3] = evictedKey;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
if (++i == pushIterations)
break;
insertKey = evictedKey;
} while (true);
addStash(evictedKey);
}
private void addStash(int key) {
if (stashSize == stashCapacity) {
// Too many pushes occurred and the stash is full, increase the
// table size.
resize(capacity << 1);
add(key);
return;
}
// Store key in the stash.
int index = capacity + stashSize;
keyTable[index] = key;
stashSize++;
size++;
}
/** Returns true if the key was removed. */
public boolean remove(int key) {
if (key == 0) {
if (!hasZeroValue)
return false;
hasZeroValue = false;
size--;
return true;
}
int index = key & mask;
if (keyTable[index] == key) {
keyTable[index] = EMPTY;
size--;
return true;
}
index = hash2(key);
if (keyTable[index] == key) {
keyTable[index] = EMPTY;
size--;
return true;
}
index = hash3(key);
if (keyTable[index] == key) {
keyTable[index] = EMPTY;
size--;
return true;
}
return removeStash(key);
}
boolean removeStash(int key) {
int[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++) {
if (keyTable[i] == key) {
removeStashIndex(i);
size--;
return true;
}
}
return false;
}
void removeStashIndex(int index) {
// If the removed location was not last, move the last tuple to the
// removed location.
stashSize--;
int lastIndex = capacity + stashSize;
if (index < lastIndex)
keyTable[index] = keyTable[lastIndex];
}
/**
* Reduces the size of the backing arrays to be the specified capacity or
* less. If the capacity is already less, nothing is done. If the set
* contains more items than the specified capacity, the next highest power
* of two capacity is used instead.
*/
public void shrink(int maximumCapacity) {
if (maximumCapacity < 0)
throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);
if (size > maximumCapacity)
maximumCapacity = size;
if (capacity <= maximumCapacity)
return;
maximumCapacity = MathUtils.nextPowerOfTwo(maximumCapacity);
resize(maximumCapacity);
}
/**
* Clears the map and reduces the size of the backing arrays to be the
* specified capacity if they are larger.
*/
public void clear(int maximumCapacity) {
if (capacity <= maximumCapacity) {
clear();
return;
}
hasZeroValue = false;
size = 0;
resize(maximumCapacity);
}
public void clear() {
if (size == 0)
return;
int[] keyTable = this.keyTable;
for (int i = capacity + stashSize; i-- > 0;)
keyTable[i] = EMPTY;
size = 0;
stashSize = 0;
hasZeroValue = false;
}
public boolean contains(int key) {
if (key == 0)
return hasZeroValue;
int index = key & mask;
if (keyTable[index] != key) {
index = hash2(key);
if (keyTable[index] != key) {
index = hash3(key);
if (keyTable[index] != key)
return containsKeyStash(key);
}
}
return true;
}
private boolean containsKeyStash(int key) {
int[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++)
if (keyTable[i] == key)
return true;
return false;
}
public int first() {
if (hasZeroValue)
return 0;
int[] keyTable = this.keyTable;
for (int i = 0, n = capacity + stashSize; i < n; i++)
if (keyTable[i] != EMPTY)
return keyTable[i];
throw new IllegalStateException("IntSet is empty.");
}
/**
* Increases the size of the backing array to accommodate the specified
* number of additional items. Useful before adding many items to avoid
* multiple backing array resizes.
*/
public void ensureCapacity(int additionalCapacity) {
int sizeNeeded = size + additionalCapacity;
if (sizeNeeded >= threshold)
resize(MathUtils.nextPowerOfTwo((int) (sizeNeeded / loadFactor)));
}
private void resize(int newSize) {
int oldEndIndex = capacity + stashSize;
capacity = newSize;
threshold = (int) (newSize * loadFactor);
mask = newSize - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2);
pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8);
int[] oldKeyTable = keyTable;
keyTable = new int[newSize + stashCapacity];
int oldSize = size;
size = hasZeroValue ? 1 : 0;
stashSize = 0;
if (oldSize > 0) {
for (int i = 0; i < oldEndIndex; i++) {
int key = oldKeyTable[i];
if (key != EMPTY)
addResize(key);
}
}
}
private int hash2(int h) {
h *= PRIME2;
return (h ^ h >>> hashShift) & mask;
}
private int hash3(int h) {
h *= PRIME3;
return (h ^ h >>> hashShift) & mask;
}
public String toString() {
if (size == 0)
return "[]";
StringBuilder buffer = new StringBuilder(32);
buffer.append('[');
int[] keyTable = this.keyTable;
int i = keyTable.length;
if (hasZeroValue)
buffer.append("0");
else {
while (i-- > 0) {
int key = keyTable[i];
if (key == EMPTY)
continue;
buffer.append(key);
break;
}
}
while (i-- > 0) {
int key = keyTable[i];
if (key == EMPTY)
continue;
buffer.append(", ");
buffer.append(key);
}
buffer.append(']');
return buffer.toString();
}
/**
* Returns an iterator for the keys in the set. Remove is supported. Note
* that the same iterator instance is returned each time this method is
* called. Use the {@link IntSetIterator} constructor for nested or
* multithreaded iteration.
*/
public IntSetIterator iterator() {
if (iterator1 == null) {
iterator1 = new IntSetIterator(this);
iterator2 = new IntSetIterator(this);
}
if (!iterator1.valid) {
iterator1.reset();
iterator1.valid = true;
iterator2.valid = false;
return iterator1;
}
iterator2.reset();
iterator2.valid = true;
iterator1.valid = false;
return iterator2;
}
static public IntSet with(int... array) {
IntSet set = new IntSet();
set.addAll(array);
return set;
}
static public class IntSetIterator {
static final int INDEX_ILLEGAL = -2;
static final int INDEX_ZERO = -1;
public boolean hasNext;
final IntSet set;
int nextIndex, currentIndex;
boolean valid = true;
public IntSetIterator(IntSet set) {
this.set = set;
reset();
}
public void reset() {
currentIndex = INDEX_ILLEGAL;
nextIndex = INDEX_ZERO;
if (set.hasZeroValue)
hasNext = true;
else
findNextIndex();
}
void findNextIndex() {
hasNext = false;
int[] keyTable = set.keyTable;
for (int n = set.capacity + set.stashSize; ++nextIndex < n;) {
if (keyTable[nextIndex] != EMPTY) {
hasNext = true;
break;
}
}
}
public void remove() {
if (currentIndex == INDEX_ZERO && set.hasZeroValue) {
set.hasZeroValue = false;
} else if (currentIndex < 0) {
throw new IllegalStateException("next must be called before remove.");
} else if (currentIndex >= set.capacity) {
set.removeStashIndex(currentIndex);
nextIndex = currentIndex - 1;
findNextIndex();
} else {
set.keyTable[currentIndex] = EMPTY;
}
currentIndex = INDEX_ILLEGAL;
set.size--;
}
public int next() {
if (!hasNext)
throw new NoSuchElementException();
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
int key = nextIndex == INDEX_ZERO ? 0 : set.keyTable[nextIndex];
currentIndex = nextIndex;
findNextIndex();
return key;
}
/** Returns a new array containing the remaining keys. */
public IntArray toArray() {
IntArray array = new IntArray(true, set.size);
while (hasNext)
array.add(next());
return array;
}
}
}