/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.badlogic.gdx.utils;
import java.util.Iterator;
import java.util.NoSuchElementException;
import chbachman.api.util.Array;
import com.badlogic.gdx.math.MathUtils;
/**
* An unordered map that uses identity comparison for keys. This implementation
* is a cuckoo hash map using 3 hashes, random walking, and a small stash for
* problematic keys. Null keys are not allowed. Null values are allowed. No
* allocation is done except when growing the table size. <br>
* <br>
* This map performs very fast get, containsKey, and remove (typically O(1),
* worst case O(log(n))). Put may be a bit slower, depending on hash collisions.
* Load factors greater than 0.91 greatly increase the chances the map will have
* to rehash to the next higher POT size.
*
* @author Nathan Sweet
*/
public class IdentityMap<K, V> implements Iterable<IdentityMap.Entry<K, V>> {
private static final int PRIME1 = 0xbe1f14b1;
private static final int PRIME2 = 0xb4b82e39;
private static final int PRIME3 = 0xced1c241;
public int size;
K[] keyTable;
V[] valueTable;
int capacity, stashSize;
private float loadFactor;
private int hashShift, mask, threshold;
private int stashCapacity;
private int pushIterations;
private Entries entries1, entries2;
private Values values1, values2;
private Keys keys1, keys2;
/**
* Creates a new map with an initial capacity of 32 and a load factor of
* 0.8. This map will hold 25 items before growing the backing table.
*/
public IdentityMap() {
this(32, 0.8f);
}
/**
* Creates a new map with a load factor of 0.8. This map will hold
* initialCapacity * 0.8 items before growing the backing table.
*/
public IdentityMap(int initialCapacity) {
this(initialCapacity, 0.8f);
}
/**
* Creates a new map with the specified initial capacity and load factor.
* This map will hold initialCapacity * loadFactor items before growing the
* backing table.
*/
public IdentityMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
if (initialCapacity > 1 << 30)
throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
capacity = MathUtils.nextPowerOfTwo(initialCapacity);
if (loadFactor <= 0)
throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
this.loadFactor = loadFactor;
threshold = (int) (capacity * loadFactor);
mask = capacity - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2);
pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8);
keyTable = (K[]) new Object[capacity + stashCapacity];
valueTable = (V[]) new Object[keyTable.length];
}
/** Creates a new map identical to the specified map. */
public IdentityMap(IdentityMap map) {
this(map.capacity, map.loadFactor);
stashSize = map.stashSize;
System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.length);
System.arraycopy(map.valueTable, 0, valueTable, 0, map.valueTable.length);
size = map.size;
}
public V put(K key, V value) {
if (key == null)
throw new IllegalArgumentException("key cannot be null.");
K[] keyTable = this.keyTable;
// Check for existing keys.
int hashCode = System.identityHashCode(key);
int index1 = hashCode & mask;
K key1 = keyTable[index1];
if (key1 == key) {
V oldValue = valueTable[index1];
valueTable[index1] = value;
return oldValue;
}
int index2 = hash2(hashCode);
K key2 = keyTable[index2];
if (key2 == key) {
V oldValue = valueTable[index2];
valueTable[index2] = value;
return oldValue;
}
int index3 = hash3(hashCode);
K key3 = keyTable[index3];
if (key3 == key) {
V oldValue = valueTable[index3];
valueTable[index3] = value;
return oldValue;
}
// Update key in the stash.
for (int i = capacity, n = i + stashSize; i < n; i++) {
if (keyTable[i] == key) {
V oldValue = valueTable[i];
valueTable[i] = value;
return oldValue;
}
}
// Check for empty buckets.
if (key1 == null) {
keyTable[index1] = key;
valueTable[index1] = value;
if (size++ >= threshold)
resize(capacity << 1);
return null;
}
if (key2 == null) {
keyTable[index2] = key;
valueTable[index2] = value;
if (size++ >= threshold)
resize(capacity << 1);
return null;
}
if (key3 == null) {
keyTable[index3] = key;
valueTable[index3] = value;
if (size++ >= threshold)
resize(capacity << 1);
return null;
}
push(key, value, index1, key1, index2, key2, index3, key3);
return null;
}
/** Skips checks for existing keys. */
private void putResize(K key, V value) {
// Check for empty buckets.
int hashCode = System.identityHashCode(key);
int index1 = hashCode & mask;
K key1 = keyTable[index1];
if (key1 == null) {
keyTable[index1] = key;
valueTable[index1] = value;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
int index2 = hash2(hashCode);
K key2 = keyTable[index2];
if (key2 == null) {
keyTable[index2] = key;
valueTable[index2] = value;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
int index3 = hash3(hashCode);
K key3 = keyTable[index3];
if (key3 == null) {
keyTable[index3] = key;
valueTable[index3] = value;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
push(key, value, index1, key1, index2, key2, index3, key3);
}
private void push(K insertKey, V insertValue, int index1, K key1, int index2, K key2, int index3, K key3) {
K[] keyTable = this.keyTable;
V[] valueTable = this.valueTable;
int mask = this.mask;
// Push keys until an empty bucket is found.
K evictedKey;
V evictedValue;
int i = 0, pushIterations = this.pushIterations;
do {
// Replace the key and value for one of the hashes.
switch (MathUtils.random(2)) {
case 0:
evictedKey = key1;
evictedValue = valueTable[index1];
keyTable[index1] = insertKey;
valueTable[index1] = insertValue;
break;
case 1:
evictedKey = key2;
evictedValue = valueTable[index2];
keyTable[index2] = insertKey;
valueTable[index2] = insertValue;
break;
default:
evictedKey = key3;
evictedValue = valueTable[index3];
keyTable[index3] = insertKey;
valueTable[index3] = insertValue;
break;
}
// If the evicted key hashes to an empty bucket, put it there and
// stop.
int hashCode = System.identityHashCode(evictedKey);
index1 = hashCode & mask;
key1 = keyTable[index1];
if (key1 == null) {
keyTable[index1] = evictedKey;
valueTable[index1] = evictedValue;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
index2 = hash2(hashCode);
key2 = keyTable[index2];
if (key2 == null) {
keyTable[index2] = evictedKey;
valueTable[index2] = evictedValue;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
index3 = hash3(hashCode);
key3 = keyTable[index3];
if (key3 == null) {
keyTable[index3] = evictedKey;
valueTable[index3] = evictedValue;
if (size++ >= threshold)
resize(capacity << 1);
return;
}
if (++i == pushIterations)
break;
insertKey = evictedKey;
insertValue = evictedValue;
} while (true);
putStash(evictedKey, evictedValue);
}
private void putStash(K key, V value) {
if (stashSize == stashCapacity) {
// Too many pushes occurred and the stash is full, increase the
// table size.
resize(capacity << 1);
put(key, value);
return;
}
// Store key in the stash.
int index = capacity + stashSize;
keyTable[index] = key;
valueTable[index] = value;
stashSize++;
size++;
}
public V get(K key) {
int hashCode = System.identityHashCode(key);
int index = hashCode & mask;
if (key != keyTable[index]) {
index = hash2(hashCode);
if (key != keyTable[index]) {
index = hash3(hashCode);
if (key != keyTable[index])
return getStash(key, null);
}
}
return valueTable[index];
}
public V get(K key, V defaultValue) {
int hashCode = System.identityHashCode(key);
int index = hashCode & mask;
if (key != keyTable[index]) {
index = hash2(hashCode);
if (key != keyTable[index]) {
index = hash3(hashCode);
if (key != keyTable[index])
return getStash(key, defaultValue);
}
}
return valueTable[index];
}
private V getStash(K key, V defaultValue) {
K[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++)
if (keyTable[i] == key)
return valueTable[i];
return defaultValue;
}
public V remove(K key) {
int hashCode = System.identityHashCode(key);
int index = hashCode & mask;
if (keyTable[index] == key) {
keyTable[index] = null;
V oldValue = valueTable[index];
valueTable[index] = null;
size--;
return oldValue;
}
index = hash2(hashCode);
if (keyTable[index] == key) {
keyTable[index] = null;
V oldValue = valueTable[index];
valueTable[index] = null;
size--;
return oldValue;
}
index = hash3(hashCode);
if (keyTable[index] == key) {
keyTable[index] = null;
V oldValue = valueTable[index];
valueTable[index] = null;
size--;
return oldValue;
}
return removeStash(key);
}
V removeStash(K key) {
K[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++) {
if (keyTable[i] == key) {
V oldValue = valueTable[i];
removeStashIndex(i);
size--;
return oldValue;
}
}
return null;
}
void removeStashIndex(int index) {
// If the removed location was not last, move the last tuple to the
// removed location.
stashSize--;
int lastIndex = capacity + stashSize;
if (index < lastIndex) {
keyTable[index] = keyTable[lastIndex];
valueTable[index] = valueTable[lastIndex];
valueTable[lastIndex] = null;
} else
valueTable[index] = null;
}
/**
* Reduces the size of the backing arrays to be the specified capacity or
* less. If the capacity is already less, nothing is done. If the map
* contains more items than the specified capacity, the next highest power
* of two capacity is used instead.
*/
public void shrink(int maximumCapacity) {
if (maximumCapacity < 0)
throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);
if (size > maximumCapacity)
maximumCapacity = size;
if (capacity <= maximumCapacity)
return;
maximumCapacity = MathUtils.nextPowerOfTwo(maximumCapacity);
resize(maximumCapacity);
}
/**
* Clears the map and reduces the size of the backing arrays to be the
* specified capacity if they are larger.
*/
public void clear(int maximumCapacity) {
if (capacity <= maximumCapacity) {
clear();
return;
}
size = 0;
resize(maximumCapacity);
}
public void clear() {
if (size == 0)
return;
K[] keyTable = this.keyTable;
V[] valueTable = this.valueTable;
for (int i = capacity + stashSize; i-- > 0;) {
keyTable[i] = null;
valueTable[i] = null;
}
size = 0;
stashSize = 0;
}
/**
* Returns true if the specified value is in the map. Note this traverses
* the entire map and compares every value, which may be an expensive
* operation.
*
* @param identity
* If true, uses == to compare the specified value with values in
* the map. If false, uses {@link #equals(Object)}.
*/
public boolean containsValue(Object value, boolean identity) {
V[] valueTable = this.valueTable;
if (value == null) {
K[] keyTable = this.keyTable;
for (int i = capacity + stashSize; i-- > 0;)
if (keyTable[i] != null && valueTable[i] == null)
return true;
} else if (identity) {
for (int i = capacity + stashSize; i-- > 0;)
if (valueTable[i] == value)
return true;
} else {
for (int i = capacity + stashSize; i-- > 0;)
if (value.equals(valueTable[i]))
return true;
}
return false;
}
public boolean containsKey(K key) {
int hashCode = System.identityHashCode(key);
int index = hashCode & mask;
if (key != keyTable[index]) {
index = hash2(hashCode);
if (key != keyTable[index]) {
index = hash3(hashCode);
if (key != keyTable[index])
return containsKeyStash(key);
}
}
return true;
}
private boolean containsKeyStash(K key) {
K[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++)
if (keyTable[i] == key)
return true;
return false;
}
/**
* Returns the key for the specified value, or null if it is not in the map.
* Note this traverses the entire map and compares every value, which may be
* an expensive operation.
*
* @param identity
* If true, uses == to compare the specified value with values in
* the map. If false, uses {@link #equals(Object)}.
*/
public K findKey(Object value, boolean identity) {
V[] valueTable = this.valueTable;
if (value == null) {
K[] keyTable = this.keyTable;
for (int i = capacity + stashSize; i-- > 0;)
if (keyTable[i] != null && valueTable[i] == null)
return keyTable[i];
} else if (identity) {
for (int i = capacity + stashSize; i-- > 0;)
if (valueTable[i] == value)
return keyTable[i];
} else {
for (int i = capacity + stashSize; i-- > 0;)
if (value.equals(valueTable[i]))
return keyTable[i];
}
return null;
}
/**
* Increases the size of the backing array to accommodate the specified
* number of additional items. Useful before adding many items to avoid
* multiple backing array resizes.
*/
public void ensureCapacity(int additionalCapacity) {
int sizeNeeded = size + additionalCapacity;
if (sizeNeeded >= threshold)
resize(MathUtils.nextPowerOfTwo((int) (sizeNeeded / loadFactor)));
}
private void resize(int newSize) {
int oldEndIndex = capacity + stashSize;
capacity = newSize;
threshold = (int) (newSize * loadFactor);
mask = newSize - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2);
pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8);
K[] oldKeyTable = keyTable;
V[] oldValueTable = valueTable;
keyTable = (K[]) new Object[newSize + stashCapacity];
valueTable = (V[]) new Object[newSize + stashCapacity];
int oldSize = size;
size = 0;
stashSize = 0;
if (oldSize > 0) {
for (int i = 0; i < oldEndIndex; i++) {
K key = oldKeyTable[i];
if (key != null)
putResize(key, oldValueTable[i]);
}
}
}
private int hash2(int h) {
h *= PRIME2;
return (h ^ h >>> hashShift) & mask;
}
private int hash3(int h) {
h *= PRIME3;
return (h ^ h >>> hashShift) & mask;
}
public String toString() {
if (size == 0)
return "[]";
StringBuilder buffer = new StringBuilder(32);
buffer.append('[');
K[] keyTable = this.keyTable;
V[] valueTable = this.valueTable;
int i = keyTable.length;
while (i-- > 0) {
K key = keyTable[i];
if (key == null)
continue;
buffer.append(key);
buffer.append('=');
buffer.append(valueTable[i]);
break;
}
while (i-- > 0) {
K key = keyTable[i];
if (key == null)
continue;
buffer.append(", ");
buffer.append(key);
buffer.append('=');
buffer.append(valueTable[i]);
}
buffer.append(']');
return buffer.toString();
}
public Iterator<Entry<K, V>> iterator() {
return entries();
}
/**
* Returns an iterator for the entries in the map. Remove is supported. Note
* that the same iterator instance is returned each time this method is
* called. Use the {@link Entries} constructor for nested or multithreaded
* iteration.
*/
public Entries<K, V> entries() {
if (entries1 == null) {
entries1 = new Entries(this);
entries2 = new Entries(this);
}
if (!entries1.valid) {
entries1.reset();
entries1.valid = true;
entries2.valid = false;
return entries1;
}
entries2.reset();
entries2.valid = true;
entries1.valid = false;
return entries2;
}
/**
* Returns an iterator for the values in the map. Remove is supported. Note
* that the same iterator instance is returned each time this method is
* called. Use the {@link Entries} constructor for nested or multithreaded
* iteration.
*/
public Values<V> values() {
if (values1 == null) {
values1 = new Values(this);
values2 = new Values(this);
}
if (!values1.valid) {
values1.reset();
values1.valid = true;
values2.valid = false;
return values1;
}
values2.reset();
values2.valid = true;
values1.valid = false;
return values2;
}
/**
* Returns an iterator for the keys in the map. Remove is supported. Note
* that the same iterator instance is returned each time this method is
* called. Use the {@link Entries} constructor for nested or multithreaded
* iteration.
*/
public Keys<K> keys() {
if (keys1 == null) {
keys1 = new Keys(this);
keys2 = new Keys(this);
}
if (!keys1.valid) {
keys1.reset();
keys1.valid = true;
keys2.valid = false;
return keys1;
}
keys2.reset();
keys2.valid = true;
keys1.valid = false;
return keys2;
}
static public class Entry<K, V> {
public K key;
public V value;
public String toString() {
return key + "=" + value;
}
}
static private abstract class MapIterator<K, V, I> implements Iterable<I>, Iterator<I> {
public boolean hasNext;
final IdentityMap<K, V> map;
int nextIndex, currentIndex;
boolean valid = true;
public MapIterator(IdentityMap<K, V> map) {
this.map = map;
reset();
}
public void reset() {
currentIndex = -1;
nextIndex = -1;
findNextIndex();
}
void findNextIndex() {
hasNext = false;
K[] keyTable = map.keyTable;
for (int n = map.capacity + map.stashSize; ++nextIndex < n;) {
if (keyTable[nextIndex] != null) {
hasNext = true;
break;
}
}
}
public void remove() {
if (currentIndex < 0)
throw new IllegalStateException("next must be called before remove.");
if (currentIndex >= map.capacity) {
map.removeStashIndex(currentIndex);
nextIndex = currentIndex - 1;
findNextIndex();
} else {
map.keyTable[currentIndex] = null;
map.valueTable[currentIndex] = null;
}
currentIndex = -1;
map.size--;
}
}
static public class Entries<K, V> extends MapIterator<K, V, Entry<K, V>> {
private Entry<K, V> entry = new Entry();
public Entries(IdentityMap<K, V> map) {
super(map);
}
/**
* Note the same entry instance is returned each time this method is
* called.
*/
public Entry<K, V> next() {
if (!hasNext)
throw new NoSuchElementException();
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
K[] keyTable = map.keyTable;
entry.key = keyTable[nextIndex];
entry.value = map.valueTable[nextIndex];
currentIndex = nextIndex;
findNextIndex();
return entry;
}
public boolean hasNext() {
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
return hasNext;
}
public Iterator<Entry<K, V>> iterator() {
return this;
}
}
static public class Values<V> extends MapIterator<Object, V, V> {
public Values(IdentityMap<?, V> map) {
super((IdentityMap<Object, V>) map);
}
public boolean hasNext() {
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
return hasNext;
}
public V next() {
if (!hasNext)
throw new NoSuchElementException();
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
V value = map.valueTable[nextIndex];
currentIndex = nextIndex;
findNextIndex();
return value;
}
public Iterator<V> iterator() {
return this;
}
/** Returns a new array containing the remaining values. */
public Array<V> toArray() {
Array array = new Array(true, map.size);
while (hasNext)
array.add(next());
return array;
}
/** Adds the remaining values to the specified array. */
public void toArray(Array<V> array) {
while (hasNext)
array.add(next());
}
}
static public class Keys<K> extends MapIterator<K, Object, K> {
public Keys(IdentityMap<K, ?> map) {
super((IdentityMap<K, Object>) map);
}
public boolean hasNext() {
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
return hasNext;
}
public K next() {
if (!hasNext)
throw new NoSuchElementException();
if (!valid)
throw new GdxRuntimeException("#iterator() cannot be used nested.");
K key = map.keyTable[nextIndex];
currentIndex = nextIndex;
findNextIndex();
return key;
}
public Iterator<K> iterator() {
return this;
}
/** Returns a new array containing the remaining keys. */
public Array<K> toArray() {
Array array = new Array(true, map.size);
while (hasNext)
array.add(next());
return array;
}
}
}