/******************************************************************************* * Copyright (c) 2012-2015 Codenvy, S.A. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * Codenvy, S.A. - initial API and implementation *******************************************************************************/ package org.eclipse.che.ide.ext.java.jdt.text; import org.eclipse.che.ide.runtime.Assert; /** * Implements a gap managing text store. The gap text store relies on the assumption that consecutive changes to a document are * co-located. The start of the gap is always moved to the location of the last change. * <p> * <strong>Performance:</strong> Typing-style changes perform in constant time unless re-allocation becomes necessary. Generally, * a change that does not cause re-allocation will cause at most one {@linkplain System#arraycopy(Object, int, Object, int, int) * arraycopy} operation of a length of about <var>d</var>, where <var>d</var> is the distance from the previous change. Let * <var>a(x)</var> be the algorithmic performance of an <code>arraycopy</code> operation of the length <var>x</var>, then such a * change then performs in <i>O(a(x))</i>, {@linkplain #get(int, int) get(int, <var>length</var>)} performs in * <i>O(a(length))</i>, {@link #get(int)} in <i>O(1)</i>. * <p> * How frequently the array needs re-allocation is controlled by the constructor parameters. * </p> * <p> * This class is not intended to be subclassed. * </p> * * @noextend This class is not intended to be subclassed by clients. * @see CopyOnWriteTextStore for a copy-on-write text store wrapper */ public class GapTextStore implements TextStore { /** * The minimum gap size allocated when re-allocation occurs. * * @since 3.3 */ private final int fMinGapSize; /** * The maximum gap size allocated when re-allocation occurs. * * @since 3.3 */ private final int fMaxGapSize; /** * The multiplier to compute the array size from the content length (1 <= fSizeMultiplier <= 2). * * @since 3.3 */ private final float fSizeMultiplier; /** The store's content */ private char[] fContent = new char[0]; /** Starting index of the gap */ private int fGapStart = 0; /** End index of the gap */ private int fGapEnd = 0; /** * The current high water mark. If a change would cause the gap to grow larger than this, the array is re-allocated. * * @since 3.3 */ private int fThreshold = 0; /** * Creates a new empty text store using the specified low and high watermarks. * * @param lowWatermark * unused - at the lower bound, the array is only resized when the content does not fit * @param highWatermark * if the gap is ever larger than this, it will automatically be shrunken (>= 0) * @deprecated use {@link GapTextStore#GapTextStore(int, int, float)} instead */ public GapTextStore(int lowWatermark, int highWatermark) { /* * Legacy constructor. The API contract states that highWatermark is the upper bound for the gap size. Albeit this contract * was not previously adhered to, it is now: The allocated gap size is fixed at half the highWatermark. Since the threshold * is always twice the allocated gap size, the gap will never grow larger than highWatermark. Previously, the gap size was * initialized to highWatermark, causing re-allocation if the content length shrunk right after allocation. The fixed gap * size is now only half of the previous value, circumventing that problem (there was no API contract specifying the initial * gap size). The previous implementation did not allow the gap size to become smaller than lowWatermark, which doesn't make * any sense: that area of the gap was simply never ever used. */ this(highWatermark / 2, highWatermark / 2, 0f); } /** * Equivalent to {@linkplain GapTextStore#GapTextStore(int, int, float) new GapTextStore(256, 4096, 0.1f)}. * * @since 3.3 */ public GapTextStore() { this(256, 4096, 0.1f); } /** * Creates an empty text store that uses re-allocation thresholds relative to the content length. Re-allocation is controlled * by the <em>gap factor</em> , which is the quotient of the gap size and the array size. Re-allocation occurs if a change * causes the gap factor to go outside <code>[0, maxGapFactor]</code>. When re-allocation occurs, the array is sized such * that the gap factor is <code>0.5 * maxGapFactor</code>. The gap size computed in this manner is bounded by the * <code>minSize</code> and <code>maxSize</code> parameters. * <p> * A <code>maxGapFactor</code> of <code>0</code> creates a text store that never has a gap at all (if <code>minSize</code> is * 0); a <code>maxGapFactor</code> of <code>1</code> creates a text store that doubles its size with every re-allocation and * that never shrinks. * </p> * <p> * The <code>minSize</code> and <code>maxSize</code> parameters are absolute bounds to the allocated gap size. Use * <code>minSize</code> to avoid frequent re-allocation for small documents. Use <code>maxSize</code> to avoid a huge gap being * allocated for large documents. * </p> * * @param minSize * the minimum gap size to allocate (>= 0; use 0 for no minimum) * @param maxSize * the maximum gap size to allocate (>= minSize; use {@link Integer#MAX_VALUE} for no maximum) * @param maxGapFactor * is the maximum fraction of the array that is occupied by the gap ( * <code>0 <= maxGapFactor <= 1</code> ) * @since 3.3 */ public GapTextStore(int minSize, int maxSize, float maxGapFactor) { Assert.isLegal(0f <= maxGapFactor && maxGapFactor <= 1f); Assert.isLegal(0 <= minSize && minSize <= maxSize); fMinGapSize = minSize; fMaxGapSize = maxSize; fSizeMultiplier = 1 / (1 - maxGapFactor / 2); } /* @see org.eclipse.jface.text.ITextStore#get(int) */ public final char get(int offset) { if (offset < fGapStart) return fContent[offset]; return fContent[offset + gapSize()]; } /* @see org.eclipse.jface.text.ITextStore#get(int, int) */ public final String get(int offset, int length) { if (fGapStart <= offset) return new String(fContent, offset + gapSize(), length); final int end = offset + length; if (end <= fGapStart) return new String(fContent, offset, length); StringBuffer buf = new StringBuffer(length); buf.append(fContent, offset, fGapStart - offset); buf.append(fContent, fGapEnd, end - fGapStart); return buf.toString(); } /* @see org.eclipse.jface.text.ITextStore#getLength() */ public final int getLength() { return fContent.length - gapSize(); } /* @see org.eclipse.jface.text.ITextStore#set(java.lang.String) */ public final void set(String text) { /* * Moves the gap to the end of the content. There is no sensible prediction of where the next change will occur, but at * least the next change will not trigger re-allocation. This is especially important when using the GapTextStore within a * CopyOnWriteTextStore, where the GTS is only initialized right before a modification. */ replace(0, getLength(), text); } /* @see org.eclipse.jface.text.ITextStore#replace(int, int, java.lang.String) */ public final void replace(int offset, int length, String text) { if (text == null) { adjustGap(offset, length, 0); } else { int textLength = text.length(); adjustGap(offset, length, textLength); if (textLength != 0) text.getChars(0, textLength, fContent, offset); } } /** * Moves the gap to <code>offset + add</code>, moving any content after <code>offset + remove</code> behind the gap. The gap * size is kept between 0 and {@link #fThreshold}, leading to re-allocation if needed. The content between <code>offset</code> * and <code>offset + add</code> is undefined after this operation. * * @param offset * the offset at which a change happens * @param remove * the number of character which are removed or overwritten at <code>offset</code> * @param add * the number of character which are inserted or overwriting at <code>offset</code> */ private void adjustGap(int offset, int remove, int add) { final int oldGapSize = gapSize(); final int newGapSize = oldGapSize - add + remove; final boolean reuseArray = 0 <= newGapSize && newGapSize <= fThreshold; final int newGapStart = offset + add; final int newGapEnd; if (reuseArray) newGapEnd = moveGap(offset, remove, oldGapSize, newGapSize, newGapStart); else newGapEnd = reallocate(offset, remove, oldGapSize, newGapSize, newGapStart); fGapStart = newGapStart; fGapEnd = newGapEnd; } /** * Moves the gap to <code>newGapStart</code>. * * @param offset * the change offset * @param remove * the number of removed / overwritten characters * @param oldGapSize * the old gap size * @param newGapSize * the gap size after the change * @param newGapStart * the offset in the array to move the gap to * @return the new gap end * @since 3.3 */ private int moveGap(int offset, int remove, int oldGapSize, int newGapSize, int newGapStart) { /* * No re-allocation necessary. The area between the change offset and gap can be copied in at most one operation. Don't copy * parts that will be overwritten anyway. */ final int newGapEnd = newGapStart + newGapSize; if (offset < fGapStart) { int afterRemove = offset + remove; if (afterRemove < fGapStart) { final int betweenSize = fGapStart - afterRemove; arrayCopy(afterRemove, fContent, newGapEnd, betweenSize); } // otherwise, only the gap gets enlarged } else { final int offsetShifted = offset + oldGapSize; final int betweenSize = offsetShifted - fGapEnd; // in the typing case, betweenSize is 0 arrayCopy(fGapEnd, fContent, fGapStart, betweenSize); } return newGapEnd; } /** * Reallocates a new array and copies the data from the previous one. * * @param offset * the change offset * @param remove * the number of removed / overwritten characters * @param oldGapSize * the old gap size * @param newGapSize * the gap size after the change if no re-allocation would occur (can be negative) * @param newGapStart * the offset in the array to move the gap to * @return the new gap end * @since 3.3 */ private int reallocate(int offset, int remove, final int oldGapSize, int newGapSize, final int newGapStart) { // the new content length (without any gap) final int newLength = fContent.length - newGapSize; // the new array size based on the gap factor int newArraySize = (int)(newLength * fSizeMultiplier); newGapSize = newArraySize - newLength; // bound the gap size within min/max if (newGapSize < fMinGapSize) { newGapSize = fMinGapSize; newArraySize = newLength + newGapSize; } else if (newGapSize > fMaxGapSize) { newGapSize = fMaxGapSize; newArraySize = newLength + newGapSize; } // the upper threshold is always twice the gapsize fThreshold = newGapSize * 2; final char[] newContent = allocate(newArraySize); final int newGapEnd = newGapStart + newGapSize; /* * Re-allocation: The old content can be copied in at most 3 operations to the newly allocated array. Either one of change * offset and the gap may come first. - unchanged area before the change offset / gap - area between the change offset and * the gap (either one may be first) - rest area after the change offset / after the gap */ if (offset < fGapStart) { // change comes before gap arrayCopy(0, newContent, 0, offset); int afterRemove = offset + remove; if (afterRemove < fGapStart) { // removal is completely before the gap final int betweenSize = fGapStart - afterRemove; arrayCopy(afterRemove, newContent, newGapEnd, betweenSize); final int restSize = fContent.length - fGapEnd; arrayCopy(fGapEnd, newContent, newGapEnd + betweenSize, restSize); } else { // removal encompasses the gap afterRemove += oldGapSize; final int restSize = fContent.length - afterRemove; arrayCopy(afterRemove, newContent, newGapEnd, restSize); } } else { // gap comes before change arrayCopy(0, newContent, 0, fGapStart); final int offsetShifted = offset + oldGapSize; final int betweenSize = offsetShifted - fGapEnd; arrayCopy(fGapEnd, newContent, fGapStart, betweenSize); final int afterRemove = offsetShifted + remove; final int restSize = fContent.length - afterRemove; arrayCopy(afterRemove, newContent, newGapEnd, restSize); } fContent = newContent; return newGapEnd; } /** * Allocates a new <code>char[size]</code>. * * @param size * the length of the new array. * @return a newly allocated char array * @since 3.3 */ private char[] allocate(int size) { return new char[size]; } /* * Executes System.arraycopy if length != 0. A length < 0 cannot happen -> don't hide coding errors by checking for negative * lengths. * @since 3.3 */ private void arrayCopy(int srcPos, char[] dest, int destPos, int length) { if (length != 0) { System.arraycopy(fContent, srcPos, dest, destPos, length); } } /** * Returns the gap size. * * @return the gap size * @since 3.3 */ private int gapSize() { return fGapEnd - fGapStart; } /** * Returns a copy of the content of this text store. For internal use only. * * @return a copy of the content of this text store */ protected String getContentAsString() { return new String(fContent); } /** * Returns the start index of the gap managed by this text store. For internal use only. * * @return the start index of the gap managed by this text store */ protected int getGapStartIndex() { return fGapStart; } /** * Returns the end index of the gap managed by this text store. For internal use only. * * @return the end index of the gap managed by this text store */ protected int getGapEndIndex() { return fGapEnd; } }