/* * ProGuard -- shrinking, optimization, obfuscation, and preverification * of Java bytecode. * * Copyright (c) 2002-2010 Eric Lafortune (eric@graphics.cornell.edu) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ package proguard.classfile.attribute.visitor; import proguard.classfile.*; import proguard.classfile.visitor.ClassPrinter; import proguard.classfile.attribute.*; import proguard.classfile.instruction.*; import proguard.classfile.instruction.visitor.InstructionVisitor; import proguard.classfile.util.SimplifiedVisitor; /** * This AttributeVisitor computes the stack sizes at all instruction offsets * of the code attributes that it visits. * * @author Eric Lafortune */ public class StackSizeComputer extends SimplifiedVisitor implements AttributeVisitor, InstructionVisitor, ExceptionInfoVisitor { //* private static final boolean DEBUG = false; /*/ private static boolean DEBUG = true; //*/ private boolean[] evaluated = new boolean[ClassConstants.TYPICAL_CODE_LENGTH]; private int[] stackSizes = new int[ClassConstants.TYPICAL_CODE_LENGTH]; private boolean exitInstructionBlock; private int stackSize; private int maxStackSize; /** * Returns whether the instruction at the given offset is reachable in the * most recently visited code attribute. */ public boolean isReachable(int instructionOffset) { return evaluated[instructionOffset]; } /** * Returns the stack size at the given instruction offset of the most * recently visited code attribute. */ public int getStackSize(int instructionOffset) { if (!evaluated[instructionOffset]) { throw new IllegalArgumentException("Unknown stack size at unreachable instruction offset ["+instructionOffset+"]"); } return stackSizes[instructionOffset]; } /** * Returns the maximum stack size of the most recently visited code attribute. */ public int getMaxStackSize() { return maxStackSize; } // Implementations for AttributeVisitor. public void visitAnyAttribute(Clazz clazz, Attribute attribute) {} public void visitCodeAttribute(Clazz clazz, Method method, CodeAttribute codeAttribute) { // DEBUG = // clazz.getName().equals("abc/Def") && // method.getName(clazz).equals("abc"); // TODO: Remove this when the code has stabilized. // Catch any unexpected exceptions from the actual visiting method. try { // Process the code. visitCodeAttribute0(clazz, method, codeAttribute); } catch (RuntimeException ex) { System.err.println("Unexpected error while computing stack sizes:"); System.err.println(" Class = ["+clazz.getName()+"]"); System.err.println(" Method = ["+method.getName(clazz)+method.getDescriptor(clazz)+"]"); System.err.println(" Exception = ["+ex.getClass().getName()+"] ("+ex.getMessage()+")"); if (DEBUG) { method.accept(clazz, new ClassPrinter()); } throw ex; } } public void visitCodeAttribute0(Clazz clazz, Method method, CodeAttribute codeAttribute) { if (DEBUG) { System.out.println("StackSizeComputer: "+clazz.getName()+"."+method.getName(clazz)+method.getDescriptor(clazz)); } // Try to reuse the previous array. int codeLength = codeAttribute.u4codeLength; if (evaluated.length < codeLength) { evaluated = new boolean[codeLength]; stackSizes = new int[codeLength]; } else { for (int index = 0; index < codeLength; index++) { evaluated[index] = false; } } // The initial stack is always empty. stackSize = 0; maxStackSize = 0; // Evaluate the instruction block starting at the entry point of the method. evaluateInstructionBlock(clazz, method, codeAttribute, 0); // Evaluate the exception handlers. codeAttribute.exceptionsAccept(clazz, method, this); } // Implementations for InstructionVisitor. public void visitSimpleInstruction(Clazz clazz, Method method, CodeAttribute codeAttribute, int offset, SimpleInstruction simpleInstruction) { byte opcode = simpleInstruction.opcode; // Some simple instructions exit from the current instruction block. exitInstructionBlock = opcode == InstructionConstants.OP_IRETURN || opcode == InstructionConstants.OP_LRETURN || opcode == InstructionConstants.OP_FRETURN || opcode == InstructionConstants.OP_DRETURN || opcode == InstructionConstants.OP_ARETURN || opcode == InstructionConstants.OP_RETURN || opcode == InstructionConstants.OP_ATHROW; } public void visitConstantInstruction(Clazz clazz, Method method, CodeAttribute codeAttribute, int offset, ConstantInstruction constantInstruction) { // Constant pool instructions never end the current instruction block. exitInstructionBlock = false; } public void visitVariableInstruction(Clazz clazz, Method method, CodeAttribute codeAttribute, int offset, VariableInstruction variableInstruction) { byte opcode = variableInstruction.opcode; // The ret instruction end the current instruction block. exitInstructionBlock = opcode == InstructionConstants.OP_RET; } public void visitBranchInstruction(Clazz clazz, Method method, CodeAttribute codeAttribute, int offset, BranchInstruction branchInstruction) { byte opcode = branchInstruction.opcode; // Evaluate the target instruction blocks. evaluateInstructionBlock(clazz, method, codeAttribute, offset + branchInstruction.branchOffset); // Evaluate the instructions after a subroutine branch. if (opcode == InstructionConstants.OP_JSR || opcode == InstructionConstants.OP_JSR_W) { // We assume subroutine calls (jsr and jsr_w instructions) don't // change the stack, other than popping the return value. stackSize -= 1; evaluateInstructionBlock(clazz, method, codeAttribute, offset + branchInstruction.length(offset)); } // Some branch instructions always end the current instruction block. exitInstructionBlock = opcode == InstructionConstants.OP_GOTO || opcode == InstructionConstants.OP_GOTO_W || opcode == InstructionConstants.OP_JSR || opcode == InstructionConstants.OP_JSR_W; } public void visitAnySwitchInstruction(Clazz clazz, Method method, CodeAttribute codeAttribute, int offset, SwitchInstruction switchInstruction) { // Evaluate the target instruction blocks. // Loop over all jump offsets. int[] jumpOffsets = switchInstruction.jumpOffsets; for (int index = 0; index < jumpOffsets.length; index++) { // Evaluate the jump instruction block. evaluateInstructionBlock(clazz, method, codeAttribute, offset + jumpOffsets[index]); } // Also evaluate the default instruction block. evaluateInstructionBlock(clazz, method, codeAttribute, offset + switchInstruction.defaultOffset); // The switch instruction always ends the current instruction block. exitInstructionBlock = true; } // Implementations for ExceptionInfoVisitor. public void visitExceptionInfo(Clazz clazz, Method method, CodeAttribute codeAttribute, ExceptionInfo exceptionInfo) { if (DEBUG) { System.out.println("Exception:"); } // The stack size when entering the exception handler is always 1. stackSize = 1; // Evaluate the instruction block starting at the entry point of the // exception handler. evaluateInstructionBlock(clazz, method, codeAttribute, exceptionInfo.u2handlerPC); } // Small utility methods. /** * Evaluates a block of instructions that hasn't been handled before, * starting at the given offset and ending at a branch instruction, a return * instruction, or a throw instruction. Branch instructions are handled * recursively. */ private void evaluateInstructionBlock(Clazz clazz, Method method, CodeAttribute codeAttribute, int instructionOffset) { if (DEBUG) { if (evaluated[instructionOffset]) { System.out.println("-- (instruction block at "+instructionOffset+" already evaluated)"); } else { System.out.println("-- instruction block:"); } } // Remember the initial stack size. int initialStackSize = stackSize; // Remember the maximum stack size. if (maxStackSize < stackSize) { maxStackSize = stackSize; } // Evaluate any instructions that haven't been evaluated before. while (!evaluated[instructionOffset]) { // Mark the instruction as evaluated. evaluated[instructionOffset] = true; Instruction instruction = InstructionFactory.create(codeAttribute.code, instructionOffset); if (DEBUG) { int stackPushCount = instruction.stackPushCount(clazz); int stackPopCount = instruction.stackPopCount(clazz); System.out.println("["+instructionOffset+"]: "+ stackSize+" - "+ stackPopCount+" + "+ stackPushCount+" = "+ (stackSize+stackPushCount-stackPopCount)+": "+ instruction.toString(instructionOffset)); } // Compute the instruction's effect on the stack size. stackSize -= instruction.stackPopCount(clazz); if (stackSize < 0) { throw new IllegalArgumentException("Stack size becomes negative after instruction "+ instruction.toString(instructionOffset)+" in ["+ clazz.getName()+"."+ method.getName(clazz)+ method.getDescriptor(clazz)+"]"); } stackSizes[instructionOffset] = stackSize += instruction.stackPushCount(clazz); // Remember the maximum stack size. if (maxStackSize < stackSize) { maxStackSize = stackSize; } // Remember the next instruction offset. int nextInstructionOffset = instructionOffset + instruction.length(instructionOffset); // Visit the instruction, in order to handle branches. instruction.accept(clazz, method, codeAttribute, instructionOffset, this); // Stop evaluating after a branch. if (exitInstructionBlock) { break; } // Continue with the next instruction. instructionOffset = nextInstructionOffset; if (DEBUG) { if (evaluated[instructionOffset]) { System.out.println("-- (instruction at "+instructionOffset+" already evaluated)"); } } } // Restore the stack size for possible subsequent instruction blocks. this.stackSize = initialStackSize; } }