/* Copyright � 1999 CERN - European Organization for Nuclear Research. Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. CERN makes no representations about the suitability of this software for any purpose. It is provided "as is" without expressed or implied warranty. */ package cern.colt.matrix.linalg; import cern.colt.matrix.DoubleFactory2D; import cern.colt.matrix.DoubleMatrix2D; /** For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the singular value decomposition is an <tt>m x n</tt> orthogonal matrix <tt>U</tt>, an <tt>n x n</tt> diagonal matrix <tt>S</tt>, and an <tt>n x n</tt> orthogonal matrix <tt>V</tt> so that <tt>A = U*S*V'</tt>. <P> The singular values, <tt>sigma[k] = S[k][k]</tt>, are ordered so that <tt>sigma[0] >= sigma[1] >= ... >= sigma[n-1]</tt>. <P> The singular value decomposition always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition. */ public class SingularValueDecomposition implements java.io.Serializable { static final long serialVersionUID = 1020; /** Arrays for internal storage of U and V. @serial internal storage of U. @serial internal storage of V. */ private double[][] U, V; /** Array for internal storage of singular values. @serial internal storage of singular values. */ private double[] s; /** Row and column dimensions. @serial row dimension. @serial column dimension. */ private int m, n; /** Constructs and returns a new singular value decomposition object; The decomposed matrices can be retrieved via instance methods of the returned decomposition object. @param A A rectangular matrix. @return A decomposition object to access <tt>U</tt>, <tt>S</tt> and <tt>V</tt>. @throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>. */ public SingularValueDecomposition(DoubleMatrix2D Arg) { Property.DEFAULT.checkRectangular(Arg); // Derived from LINPACK code. // Initialize. double[][] A = Arg.toArray(); m = Arg.rows(); n = Arg.columns(); int nu = Math.min(m,n); s = new double [Math.min(m+1,n)]; U = new double [m][nu]; V = new double [n][n]; double[] e = new double [n]; double[] work = new double [m]; boolean wantu = true; boolean wantv = true; // Reduce A to bidiagonal form, storing the diagonal elements // in s and the super-diagonal elements in e. int nct = Math.min(m-1,n); int nrt = Math.max(0,Math.min(n-2,m)); for (int k = 0; k < Math.max(nct,nrt); k++) { if (k < nct) { // Compute the transformation for the k-th column and // place the k-th diagonal in s[k]. // Compute 2-norm of k-th column without under/overflow. s[k] = 0; for (int i = k; i < m; i++) { s[k] = Algebra.hypot(s[k],A[i][k]); } if (s[k] != 0.0) { if (A[k][k] < 0.0) { s[k] = -s[k]; } for (int i = k; i < m; i++) { A[i][k] /= s[k]; } A[k][k] += 1.0; } s[k] = -s[k]; } for (int j = k+1; j < n; j++) { if ((k < nct) & (s[k] != 0.0)) { // Apply the transformation. double t = 0; for (int i = k; i < m; i++) { t += A[i][k]*A[i][j]; } t = -t/A[k][k]; for (int i = k; i < m; i++) { A[i][j] += t*A[i][k]; } } // Place the k-th row of A into e for the // subsequent calculation of the row transformation. e[j] = A[k][j]; } if (wantu & (k < nct)) { // Place the transformation in U for subsequent back // multiplication. for (int i = k; i < m; i++) { U[i][k] = A[i][k]; } } if (k < nrt) { // Compute the k-th row transformation and place the // k-th super-diagonal in e[k]. // Compute 2-norm without under/overflow. e[k] = 0; for (int i = k+1; i < n; i++) { e[k] = Algebra.hypot(e[k],e[i]); } if (e[k] != 0.0) { if (e[k+1] < 0.0) { e[k] = -e[k]; } for (int i = k+1; i < n; i++) { e[i] /= e[k]; } e[k+1] += 1.0; } e[k] = -e[k]; if ((k+1 < m) & (e[k] != 0.0)) { // Apply the transformation. for (int i = k+1; i < m; i++) { work[i] = 0.0; } for (int j = k+1; j < n; j++) { for (int i = k+1; i < m; i++) { work[i] += e[j]*A[i][j]; } } for (int j = k+1; j < n; j++) { double t = -e[j]/e[k+1]; for (int i = k+1; i < m; i++) { A[i][j] += t*work[i]; } } } if (wantv) { // Place the transformation in V for subsequent // back multiplication. for (int i = k+1; i < n; i++) { V[i][k] = e[i]; } } } } // Set up the final bidiagonal matrix or order p. int p = Math.min(n,m+1); if (nct < n) { s[nct] = A[nct][nct]; } if (m < p) { s[p-1] = 0.0; } if (nrt+1 < p) { e[nrt] = A[nrt][p-1]; } e[p-1] = 0.0; // If required, generate U. if (wantu) { for (int j = nct; j < nu; j++) { for (int i = 0; i < m; i++) { U[i][j] = 0.0; } U[j][j] = 1.0; } for (int k = nct-1; k >= 0; k--) { if (s[k] != 0.0) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k; i < m; i++) { t += U[i][k]*U[i][j]; } t = -t/U[k][k]; for (int i = k; i < m; i++) { U[i][j] += t*U[i][k]; } } for (int i = k; i < m; i++ ) { U[i][k] = -U[i][k]; } U[k][k] = 1.0 + U[k][k]; for (int i = 0; i < k-1; i++) { U[i][k] = 0.0; } } else { for (int i = 0; i < m; i++) { U[i][k] = 0.0; } U[k][k] = 1.0; } } } // If required, generate V. if (wantv) { for (int k = n-1; k >= 0; k--) { if ((k < nrt) & (e[k] != 0.0)) { for (int j = k+1; j < nu; j++) { double t = 0; for (int i = k+1; i < n; i++) { t += V[i][k]*V[i][j]; } t = -t/V[k+1][k]; for (int i = k+1; i < n; i++) { V[i][j] += t*V[i][k]; } } } for (int i = 0; i < n; i++) { V[i][k] = 0.0; } V[k][k] = 1.0; } } // Main iteration loop for the singular values. int pp = p-1; int iter = 0; double eps = Math.pow(2.0,-52.0); while (p > 0) { int k,kase; // Here is where a test for too many iterations would go. // This section of the program inspects for // negligible elements in the s and e arrays. On // completion the variables kase and k are set as follows. // kase = 1 if s(p) and e[k-1] are negligible and k<p // kase = 2 if s(k) is negligible and k<p // kase = 3 if e[k-1] is negligible, k<p, and // s(k), ..., s(p) are not negligible (qr step). // kase = 4 if e(p-1) is negligible (convergence). for (k = p-2; k >= -1; k--) { if (k == -1) { break; } if (Math.abs(e[k]) <= eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) { e[k] = 0.0; break; } } if (k == p-2) { kase = 4; } else { int ks; for (ks = p-1; ks >= k; ks--) { if (ks == k) { break; } double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k+1 ? Math.abs(e[ks-1]) : 0.); if (Math.abs(s[ks]) <= eps*t) { s[ks] = 0.0; break; } } if (ks == k) { kase = 3; } else if (ks == p-1) { kase = 1; } else { kase = 2; k = ks; } } k++; // Perform the task indicated by kase. switch (kase) { // Deflate negligible s(p). case 1: { double f = e[p-2]; e[p-2] = 0.0; for (int j = p-2; j >= k; j--) { double t = Algebra.hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; if (j != k) { f = -sn*e[j-1]; e[j-1] = cs*e[j-1]; } if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][p-1]; V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; V[i][j] = t; } } } } break; // Split at negligible s(k). case 2: { double f = e[k-1]; e[k-1] = 0.0; for (int j = k; j < p; j++) { double t = Algebra.hypot(s[j],f); double cs = s[j]/t; double sn = f/t; s[j] = t; f = -sn*e[j]; e[j] = cs*e[j]; if (wantu) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][k-1]; U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; U[i][j] = t; } } } } break; // Perform one qr step. case 3: { // Calculate the shift. double scale = Math.max(Math.max(Math.max(Math.max( Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), Math.abs(s[k])),Math.abs(e[k])); double sp = s[p-1]/scale; double spm1 = s[p-2]/scale; double epm1 = e[p-2]/scale; double sk = s[k]/scale; double ek = e[k]/scale; double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; double c = (sp*epm1)*(sp*epm1); double shift = 0.0; if ((b != 0.0) | (c != 0.0)) { shift = Math.sqrt(b*b + c); if (b < 0.0) { shift = -shift; } shift = c/(b + shift); } double f = (sk + sp)*(sk - sp) + shift; double g = sk*ek; // Chase zeros. for (int j = k; j < p-1; j++) { double t = Algebra.hypot(f,g); double cs = f/t; double sn = g/t; if (j != k) { e[j-1] = t; } f = cs*s[j] + sn*e[j]; e[j] = cs*e[j] - sn*s[j]; g = sn*s[j+1]; s[j+1] = cs*s[j+1]; if (wantv) { for (int i = 0; i < n; i++) { t = cs*V[i][j] + sn*V[i][j+1]; V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; V[i][j] = t; } } t = Algebra.hypot(f,g); cs = f/t; sn = g/t; s[j] = t; f = cs*e[j] + sn*s[j+1]; s[j+1] = -sn*e[j] + cs*s[j+1]; g = sn*e[j+1]; e[j+1] = cs*e[j+1]; if (wantu && (j < m-1)) { for (int i = 0; i < m; i++) { t = cs*U[i][j] + sn*U[i][j+1]; U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; U[i][j] = t; } } } e[p-2] = f; iter = iter + 1; } break; // Convergence. case 4: { // Make the singular values positive. if (s[k] <= 0.0) { s[k] = (s[k] < 0.0 ? -s[k] : 0.0); if (wantv) { for (int i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } // Order the singular values. while (k < pp) { if (s[k] >= s[k+1]) { break; } double t = s[k]; s[k] = s[k+1]; s[k+1] = t; if (wantv && (k < n-1)) { for (int i = 0; i < n; i++) { t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; } } if (wantu && (k < m-1)) { for (int i = 0; i < m; i++) { t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; } } k++; } iter = 0; p--; } break; } } } /** Returns the two norm condition number, which is <tt>max(S) / min(S)</tt>. */ public double cond() { return s[0]/s[Math.min(m,n)-1]; } /** Returns the diagonal matrix of singular values. @return S */ public DoubleMatrix2D getS() { double[][] S = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { S[i][j] = 0.0; } S[i][i] = this.s[i]; } return DoubleFactory2D.dense.make(S); } /** Returns the diagonal of <tt>S</tt>, which is a one-dimensional array of singular values @return diagonal of <tt>S</tt>. */ public double[] getSingularValues() { return s; } /** Returns the left singular vectors <tt>U</tt>. @return <tt>U</tt> */ public DoubleMatrix2D getU() { //return new DoubleMatrix2D(U,m,Math.min(m+1,n)); return DoubleFactory2D.dense.make(U).viewPart(0,0,m,Math.min(m+1,n)); } /** Returns the right singular vectors <tt>V</tt>. @return <tt>V</tt> */ public DoubleMatrix2D getV() { return DoubleFactory2D.dense.make(V); } /** Returns the two norm, which is <tt>max(S)</tt>. */ public double norm2() { return s[0]; } /** Returns the effective numerical matrix rank, which is the number of nonnegligible singular values. */ public int rank() { double eps = Math.pow(2.0,-52.0); double tol = Math.max(m,n)*s[0]*eps; int r = 0; for (int i = 0; i < s.length; i++) { if (s[i] > tol) { r++; } } return r; } /** Returns a String with (propertyName, propertyValue) pairs. Useful for debugging or to quickly get the rough picture. For example, <pre> rank : 3 trace : 0 </pre> */ public String toString() { StringBuffer buf = new StringBuffer(); String unknown = "Illegal operation or error: "; buf.append("---------------------------------------------------------------------\n"); buf.append("SingularValueDecomposition(A) --> cond(A), rank(A), norm2(A), U, S, V\n"); buf.append("---------------------------------------------------------------------\n"); buf.append("cond = "); try { buf.append(String.valueOf(this.cond()));} catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); } buf.append("\nrank = "); try { buf.append(String.valueOf(this.rank()));} catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); } buf.append("\nnorm2 = "); try { buf.append(String.valueOf(this.norm2()));} catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); } buf.append("\n\nU = "); try { buf.append(String.valueOf(this.getU()));} catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); } buf.append("\n\nS = "); try { buf.append(String.valueOf(this.getS()));} catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); } buf.append("\n\nV = "); try { buf.append(String.valueOf(this.getV()));} catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); } return buf.toString(); } }