/* -*-mode:java; c-basic-offset:2; indent-tabs-mode:nil -*- */ /* JOrbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk<ymnk@jcraft.com> * * Many thanks to * Monty <monty@xiph.org> and * The XIPHOPHORUS Company http://www.xiph.org/ . * JOrbis has been based on their awesome works, Vorbis codec. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package com.jcraft.jorbis; import com.jcraft.jogg.*; class StaticCodeBook{ int dim; // codebook dimensions (elements per vector) int entries; // codebook entries int[] lengthlist; // codeword lengths in bits // mapping int maptype; // 0=none // 1=implicitly populated values from map column // 2=listed arbitrary values // The below does a linear, single monotonic sequence mapping. int q_min; // packed 32 bit float; quant value 0 maps to minval int q_delta; // packed 32 bit float; val 1 - val 0 == delta int q_quant; // bits: 0 < quant <= 16 int q_sequencep; // bitflag // additional information for log (dB) mapping; the linear mapping // is assumed to actually be values in dB. encodebias is used to // assign an error weight to 0 dB. We have two additional flags: // zeroflag indicates if entry zero is to represent -Inf dB; negflag // indicates if we're to represent negative linear values in a // mirror of the positive mapping. int[] quantlist; // map == 1: (int)(entries/dim) element column map // map == 2: list of dim*entries quantized entry vals StaticCodeBook(){ } int pack(Buffer opb){ int i; boolean ordered=false; opb.write(0x564342, 24); opb.write(dim, 16); opb.write(entries, 24); // pack the codewords. There are two packings; length ordered and // length random. Decide between the two now. for(i=1; i<entries; i++){ if(lengthlist[i]<lengthlist[i-1]) break; } if(i==entries) ordered=true; if(ordered){ // length ordered. We only need to say how many codewords of // each length. The actual codewords are generated // deterministically int count=0; opb.write(1, 1); // ordered opb.write(lengthlist[0]-1, 5); // 1 to 32 for(i=1; i<entries; i++){ int _this=lengthlist[i]; int _last=lengthlist[i-1]; if(_this>_last){ for(int j=_last; j<_this; j++){ opb.write(i-count, Util.ilog(entries-count)); count=i; } } } opb.write(i-count, Util.ilog(entries-count)); } else{ // length random. Again, we don't code the codeword itself, just // the length. This time, though, we have to encode each length opb.write(0, 1); // unordered // algortihmic mapping has use for 'unused entries', which we tag // here. The algorithmic mapping happens as usual, but the unused // entry has no codeword. for(i=0; i<entries; i++){ if(lengthlist[i]==0) break; } if(i==entries){ opb.write(0, 1); // no unused entries for(i=0; i<entries; i++){ opb.write(lengthlist[i]-1, 5); } } else{ opb.write(1, 1); // we have unused entries; thus we tag for(i=0; i<entries; i++){ if(lengthlist[i]==0){ opb.write(0, 1); } else{ opb.write(1, 1); opb.write(lengthlist[i]-1, 5); } } } } // is the entry number the desired return value, or do we have a // mapping? If we have a mapping, what type? opb.write(maptype, 4); switch(maptype){ case 0: // no mapping break; case 1: case 2: // implicitly populated value mapping // explicitly populated value mapping if(quantlist==null){ // no quantlist? error return (-1); } // values that define the dequantization opb.write(q_min, 32); opb.write(q_delta, 32); opb.write(q_quant-1, 4); opb.write(q_sequencep, 1); { int quantvals=0; switch(maptype){ case 1: // a single column of (c->entries/c->dim) quantized values for // building a full value list algorithmically (square lattice) quantvals=maptype1_quantvals(); break; case 2: // every value (c->entries*c->dim total) specified explicitly quantvals=entries*dim; break; } // quantized values for(i=0; i<quantvals; i++){ opb.write(Math.abs(quantlist[i]), q_quant); } } break; default: // error case; we don't have any other map types now return (-1); } return (0); } // unpacks a codebook from the packet buffer into the codebook struct, // readies the codebook auxiliary structures for decode int unpack(Buffer opb){ int i; //memset(s,0,sizeof(static_codebook)); // make sure alignment is correct if(opb.read(24)!=0x564342){ // goto _eofout; clear(); return (-1); } // first the basic parameters dim=opb.read(16); entries=opb.read(24); if(entries==-1){ // goto _eofout; clear(); return (-1); } // codeword ordering.... length ordered or unordered? switch(opb.read(1)){ case 0: // unordered lengthlist=new int[entries]; // allocated but unused entries? if(opb.read(1)!=0){ // yes, unused entries for(i=0; i<entries; i++){ if(opb.read(1)!=0){ int num=opb.read(5); if(num==-1){ // goto _eofout; clear(); return (-1); } lengthlist[i]=num+1; } else{ lengthlist[i]=0; } } } else{ // all entries used; no tagging for(i=0; i<entries; i++){ int num=opb.read(5); if(num==-1){ // goto _eofout; clear(); return (-1); } lengthlist[i]=num+1; } } break; case 1: // ordered { int length=opb.read(5)+1; lengthlist=new int[entries]; for(i=0; i<entries;){ int num=opb.read(Util.ilog(entries-i)); if(num==-1){ // goto _eofout; clear(); return (-1); } for(int j=0; j<num; j++, i++){ lengthlist[i]=length; } length++; } } break; default: // EOF return (-1); } // Do we have a mapping to unpack? switch((maptype=opb.read(4))){ case 0: // no mapping break; case 1: case 2: // implicitly populated value mapping // explicitly populated value mapping q_min=opb.read(32); q_delta=opb.read(32); q_quant=opb.read(4)+1; q_sequencep=opb.read(1); { int quantvals=0; switch(maptype){ case 1: quantvals=maptype1_quantvals(); break; case 2: quantvals=entries*dim; break; } // quantized values quantlist=new int[quantvals]; for(i=0; i<quantvals; i++){ quantlist[i]=opb.read(q_quant); } if(quantlist[quantvals-1]==-1){ // goto _eofout; clear(); return (-1); } } break; default: // goto _eofout; clear(); return (-1); } // all set return (0); // _errout: // _eofout: // vorbis_staticbook_clear(s); // return(-1); } // there might be a straightforward one-line way to do the below // that's portable and totally safe against roundoff, but I haven't // thought of it. Therefore, we opt on the side of caution private int maptype1_quantvals(){ int vals=(int)(Math.floor(Math.pow(entries, 1./dim))); // the above *should* be reliable, but we'll not assume that FP is // ever reliable when bitstream sync is at stake; verify via integer // means that vals really is the greatest value of dim for which // vals^b->bim <= b->entries // treat the above as an initial guess while(true){ int acc=1; int acc1=1; for(int i=0; i<dim; i++){ acc*=vals; acc1*=vals+1; } if(acc<=entries&&acc1>entries){ return (vals); } else{ if(acc>entries){ vals--; } else{ vals++; } } } } void clear(){ } // unpack the quantized list of values for encode/decode // we need to deal with two map types: in map type 1, the values are // generated algorithmically (each column of the vector counts through // the values in the quant vector). in map type 2, all the values came // in in an explicit list. Both value lists must be unpacked float[] unquantize(){ if(maptype==1||maptype==2){ int quantvals; float mindel=float32_unpack(q_min); float delta=float32_unpack(q_delta); float[] r=new float[entries*dim]; // maptype 1 and 2 both use a quantized value vector, but // different sizes switch(maptype){ case 1: // most of the time, entries%dimensions == 0, but we need to be // well defined. We define that the possible vales at each // scalar is values == entries/dim. If entries%dim != 0, we'll // have 'too few' values (values*dim<entries), which means that // we'll have 'left over' entries; left over entries use zeroed // values (and are wasted). So don't generate codebooks like that quantvals=maptype1_quantvals(); for(int j=0; j<entries; j++){ float last=0.f; int indexdiv=1; for(int k=0; k<dim; k++){ int index=(j/indexdiv)%quantvals; float val=quantlist[index]; val=Math.abs(val)*delta+mindel+last; if(q_sequencep!=0) last=val; r[j*dim+k]=val; indexdiv*=quantvals; } } break; case 2: for(int j=0; j<entries; j++){ float last=0.f; for(int k=0; k<dim; k++){ float val=quantlist[j*dim+k]; //if((j*dim+k)==0){System.err.println(" | 0 -> "+val+" | ");} val=Math.abs(val)*delta+mindel+last; if(q_sequencep!=0) last=val; r[j*dim+k]=val; //if((j*dim+k)==0){System.err.println(" $ r[0] -> "+r[0]+" | ");} } } //System.err.println("\nr[0]="+r[0]); } return (r); } return (null); } // 32 bit float (not IEEE; nonnormalized mantissa + // biased exponent) : neeeeeee eeemmmmm mmmmmmmm mmmmmmmm // Why not IEEE? It's just not that important here. static final int VQ_FEXP=10; static final int VQ_FMAN=21; static final int VQ_FEXP_BIAS=768; // bias toward values smaller than 1. // doesn't currently guard under/overflow static long float32_pack(float val){ int sign=0; int exp; int mant; if(val<0){ sign=0x80000000; val=-val; } exp=(int)Math.floor(Math.log(val)/Math.log(2)); mant=(int)Math.rint(Math.pow(val, (VQ_FMAN-1)-exp)); exp=(exp+VQ_FEXP_BIAS)<<VQ_FMAN; return (sign|exp|mant); } static float float32_unpack(int val){ float mant=val&0x1fffff; float exp=(val&0x7fe00000)>>>VQ_FMAN; if((val&0x80000000)!=0) mant=-mant; return (ldexp(mant, ((int)exp)-(VQ_FMAN-1)-VQ_FEXP_BIAS)); } static float ldexp(float foo, int e){ return (float)(foo*Math.pow(2, e)); } }