/* * Short term port to Java. * Copyright (C) 1999 Christopher Edwards * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * */ package javaforce.codec.gsm; import java.io.*; public class Short_term { public void Gsm_Short_Term_Analysis_Filter( Gsm_State S, short[] LARc, /* coded log area ratio [0..7] IN */ short[] s /* signal [0..159] IN/OUT */ ) throws ArrayIndexOutOfBoundsException { short[] LARp = new short[8]; int array_index0 = S.getJ(); int array_index1 = array_index0; array_index1 ^= 1; S.setJ((short) array_index1); if (array_index0 < 0 || array_index0 > 1 || array_index1 < 0 || array_index1 > 1) { throw new ArrayIndexOutOfBoundsException("Gsm_Short_Term_Synthesis_Filter: Indexing LARpp " + "incorrectly. Should be >= 0 and <= 1"); } short[] LARpp_j = S.getLARppIndexed(array_index0); short[] LARpp_j_1 = S.getLARppIndexed(array_index1); Decoding_of_the_coded_Log_Area_Ratios(LARc, LARpp_j); Coefficients_0_12(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); Short_term_analysis_filtering(S, LARp, 13, s, 0); Coefficients_13_26(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); Short_term_analysis_filtering(S, LARp, 14, s, 13); Coefficients_27_39(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); Short_term_analysis_filtering(S, LARp, 13, s, 27); Coefficients_40_159(LARpp_j, LARp); LARp_to_rp(LARp); Short_term_analysis_filtering(S, LARp, 120, s, 40); } public void Gsm_Short_Term_Synthesis_Filter( Gsm_State S, short[] LARcr, /* received log area ratios [0..7] IN */ short[] wt, /* received d [0..159] IN */ int[] s /* signal s [0..159] OUT */ ) throws ArrayIndexOutOfBoundsException { short[] LARp = new short[8]; int array_index0 = S.getJ(); int array_index1 = array_index0; array_index1 ^= 1; S.setJ((short) array_index1); if (array_index0 < 0 || array_index0 > 1 || array_index1 < 0 || array_index1 > 1) { throw new ArrayIndexOutOfBoundsException("Gsm_Short_Term_Synthesis_Filter: Indexing LARpp " + "incorrectly. Should be >= 0 and <= 1"); } short[] LARpp_j = S.getLARppIndexed(array_index0); short[] LARpp_j_1 = S.getLARppIndexed(array_index1); Decoding_of_the_coded_Log_Area_Ratios(LARcr, LARpp_j); Coefficients_0_12(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); Short_term_synthesis_filtering(S, LARp, 13, wt, s, 0); Coefficients_13_26(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); Short_term_synthesis_filtering(S, LARp, 14, wt, s, 13); Coefficients_27_39(LARpp_j_1, LARpp_j, LARp); LARp_to_rp(LARp); Short_term_synthesis_filtering(S, LARp, 13, wt, s, 27); Coefficients_40_159(LARpp_j, LARp); LARp_to_rp(LARp); Short_term_synthesis_filtering(S, LARp, 120, wt, s, 40); S.setLARppIndexed(array_index0, LARpp_j); S.setLARppIndexed(array_index1, LARpp_j_1); } public static void Decoding_of_the_coded_Log_Area_Ratios( short[] LARc, /* coded log area ratio [0..7] IN */ short[] LARpp) /* out: decoded .. */ { short temp1 = 0, temp2 = 0; int index = 0; /* This procedure requires for efficient implementation * two tables. * * INVA[1..8] = integer( (32768 * 8) / real_A[1..8]) * MIC[1..8] = minimum value of the LARc[1..8] */ /* Compute the LARpp[1..8] */ STEP(LARc, LARpp, index++, temp1, (short) 0, (short) -32, (short) 13107); STEP(LARc, LARpp, index++, temp1, (short) 0, (short) -32, (short) 13107); STEP(LARc, LARpp, index++, temp1, (short) 2048, (short) -16, (short) 13107); STEP(LARc, LARpp, index++, temp1, (short) -2560, (short) -16, (short) 13107); STEP(LARc, LARpp, index++, temp1, (short) 94, (short) -8, (short) 19223); STEP(LARc, LARpp, index++, temp1, (short) -1792, (short) -8, (short) 17476); STEP(LARc, LARpp, index++, temp1, (short) -341, (short) -4, (short) 31454); STEP(LARc, LARpp, index++, temp1, (short) -1144, (short) -4, (short) 29708); /* NOTE: the addition of *MIC is used to restore * the sign of *LARc. */ } public static void STEP(short[] LARc, short[] LARpp, int index, short temp1, short B, short MIC, short INVA) { temp1 = (short) (Add.GSM_ADD(LARc[index], MIC) << 10); temp1 = Add.GSM_SUB(temp1, (short) (B << 1)); temp1 = Add.GSM_MULT_R(INVA, temp1); LARpp[index] = Add.GSM_ADD(temp1, temp1); } /* 4.2.9 */ /* Computation of the quantized reflection coefficients */ /* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] */ /* * Within each frame of 160 analyzed speech samples the short term * analysis and synthesis filters operate with four different sets of * coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) * and the actual set of decoded LARs (LARpp(j)) * * (Initial value: LARpp(j-1)[1..8] = 0.) */ public static void Coefficients_0_12( short[] LARpp_j_1, short[] LARpp_j, short[] LARp) { for (int i = 0; i < 8; i++) { LARp[i] = Add.GSM_ADD(Add.SASR(LARpp_j_1[i], 2), Add.SASR(LARpp_j[i], 2)); LARp[i] = Add.GSM_ADD(LARp[i], Add.SASR(LARpp_j_1[i], 1)); } } public static void Coefficients_13_26( short[] LARpp_j_1, short[] LARpp_j, short[] LARp) { for (int i = 0; i < 8; i++) { LARp[i] = Add.GSM_ADD(Add.SASR(LARpp_j_1[i], 1), Add.SASR(LARpp_j[i], 1)); } } public static void Coefficients_27_39( short[] LARpp_j_1, short[] LARpp_j, short[] LARp) { for (int i = 0; i < 8; i++) { LARp[i] = Add.GSM_ADD(Add.SASR(LARpp_j_1[i], 2), Add.SASR(LARpp_j[i], 2)); LARp[i] = Add.GSM_ADD(LARp[i], Add.SASR(LARpp_j[i], 1)); } } public static void Coefficients_40_159( short[] LARpp_j, short[] LARp) { for (int i = 0; i < 8; i++) { LARp[i] = LARpp_j[i]; } } /* 4.2.9.2 */ /* * The input of this method is the interpolated LARp[0..7] array. * The reflection coefficients, rp[i], are used in the analysis * filter and in the synthesis filter. */ public static void LARp_to_rp( short[] LARp) /* [0..7] IN/OUT */ { short temp; for (int i = 0; i < 8; i++) { if (LARp[i] < 0) { temp = (short) (LARp[i] == Gsm_Def.MIN_WORD ? Gsm_Def.MAX_WORD : -(LARp[i])); LARp[i] = (short) (-((temp < 11059) ? temp << 1 : ((temp < 20070) ? temp + 11059 : Add.GSM_ADD((short) (temp >> 2), (short) 26112)))); } else { temp = LARp[i]; LARp[i] = (short) ((temp < 11059) ? temp << 1 : ((temp < 20070) ? temp + 11059 : Add.GSM_ADD((short) (temp >> 2), (short) 26112))); } } } /* * This procedure computes the short term residual signal d[..] to be fed * to the RPE-LTP loop from the s[..] signal and from the local rp[..] * array (quantized reflection coefficients). As the call of this * procedure can be done in many ways (see the interpolation of the LAR * coefficient), it is assumed that the computation begins with index * k_start (for arrays d[..] and s[..]) and stops with index k_end * (k_start and k_end are defined in 4.2.9.1). This procedure also * needs to keep the array u[0..7] in memory for each call. */ private void Short_term_analysis_filtering( Gsm_State S, short[] rp, /* [0..7] IN */ int k_n, /* k_end - k_start */ short[] s, /* [0..n-1] IN/OUT */ int s_index) { short[] u = S.getU(); short di = 0, zzz = 0, ui = 0, sav = 0, rpi = 0; while (k_n != 0) { k_n--; di = sav = s[s_index]; for (int i = 0; i < 8; i++) { /* YYY */ ui = u[i]; rpi = rp[i]; u[i] = sav; zzz = Add.GSM_MULT_R(rpi, di); sav = Add.GSM_ADD(ui, zzz); zzz = Add.GSM_MULT_R(rpi, ui); di = Add.GSM_ADD(di, zzz); } s[s_index++] = di; } S.setU(u); } public static void Short_term_synthesis_filtering( Gsm_State S, short[] rrp, /* [0..7] IN */ int k, /* k_end - k_start */ short[] wt, /* [0..k-1] IN */ int[] sr, /* [0..k-1] OUT */ int wt_sr_index_start) { short[] v_temp = S.getV(); short sri = 0, tmp1 = 0, tmp2 = 0; int ltmp = 0; /* for GSM_ADD & GSM_SUB */ int index = wt_sr_index_start; while (k != 0) { k--; sri = wt[index]; for (int i = 7; i >= 0; i--) { /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], * v_temp[i] ) ); */ tmp1 = rrp[i]; tmp2 = v_temp[i]; tmp2 = (short) (tmp1 == Gsm_Def.MIN_WORD && tmp2 == Gsm_Def.MIN_WORD ? Gsm_Def.MAX_WORD : 0x0FFFF & (((int) tmp1 * (int) tmp2 + 16384) >> 15)); sri = Add.GSM_SUB(sri, tmp2); /* v[i+1] = GSM_ADD( v_temp[i], * gsm_mult_r( rrp[i], sri ) ); */ tmp1 = (short) (tmp1 == Gsm_Def.MIN_WORD && sri == Gsm_Def.MIN_WORD ? Gsm_Def.MAX_WORD : 0x0FFFF & (((int) tmp1 * (int) sri + 16384) >> 15)); v_temp[i + 1] = Add.GSM_ADD(v_temp[i], tmp1); } sr[index++] = v_temp[0] = sri; } S.setV(v_temp); } }