/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hive.ql.exec.vector.expressions; import java.util.Random; /** * A high-performance set implementation used to support fast set membership testing, * using Cuckoo hashing. This is used to support fast tests of the form * * column IN ( <list-of-values ) * * For details on the algorithm, see R. Pagh and F. F. Rodler, "Cuckoo Hashing," * Elsevier Science preprint, Dec. 2003. http://www.itu.dk/people/pagh/papers/cuckoo-jour.pdf. */ public class CuckooSetBytes { private byte t1[][]; private byte t2[][]; private byte prev1[][] = null; // used for rehashing to get last set of values private byte prev2[][] = null; // " " private int n; // current array size private static final double PADDING_FACTOR = 1.0/0.40; // have minimum 40% fill factor private int salt = 0; private Random gen = new Random(676983475); private int rehashCount = 0; private static final long INT_MASK = 0x00000000ffffffffL; private static final long BYTE_MASK = 0x00000000000000ffL; /** * Allocate a new set to hold expectedSize values. Re-allocation to expand * the set is not implemented, so the expected size must be at least the * size of the set to be inserted. * @param expectedSize At least the size of the set of values that will be inserted. */ public CuckooSetBytes(int expectedSize) { // Choose array size. We have two hash tables to hold entries, so the sum // of the two should have a bit more than twice as much space as the // minimum required. n = (int) (expectedSize * PADDING_FACTOR / 2.0); // some prime numbers spaced about at powers of 2 in magnitude // try to get prime number table size to have less dependence on good hash function int primes[] = CuckooSetLong.primes; for (int i = 0; i != primes.length; i++) { if (n <= primes[i]) { n = primes[i]; break; } } t1 = new byte[n][]; t2 = new byte[n][]; updateHashSalt(); } /** * Return true if and only if the value in byte array b beginning at start * and ending at start+len is present in the set. */ public boolean lookup(byte[] b, int start, int len) { return entryEqual(t1, h1(b, start, len), b, start, len) || entryEqual(t2, h2(b, start, len), b, start, len); } private static boolean entryEqual(byte[][] t, int hash, byte[] b, int start, int len) { return t[hash] != null && StringExpr.equal(t[hash], 0, t[hash].length, b, start, len); } public void insert(byte[] x) { byte[] temp; if (lookup(x, 0, x.length)) { return; } // Try to insert up to n times. Rehash if that fails. for(int i = 0; i != n; i++) { int hash1 = h1(x, 0, x.length); if (t1[hash1] == null) { t1[hash1] = x; return; } // swap x and t1[h1(x)] temp = t1[hash1]; t1[hash1] = x; x = temp; int hash2 = h2(x, 0, x.length); if (t2[hash2] == null) { t2[hash2] = x; return; } // swap x and t2[h2(x)] temp = t2[hash2]; t2[hash2] = x; x = temp; } rehash(); insert(x); } /** * Insert all values in the input array into the set. */ public void load(byte[][] a) { for (byte[] x : a) { insert(x); } } /** * Try to insert with up to n value's "poked out". Return the last value poked out. * If the value is not blank then we assume there was a cycle. * Don't try to insert the same value twice. This is for use in rehash only, * so you won't see the same value twice. */ private byte[] tryInsert(byte[] x) { byte[] temp; for(int i = 0; i != n; i++) { int hash1 = h1(x, 0, x.length); if (t1[hash1] == null) { t1[hash1] = x; return null; } // swap x and t1[h1(x)] temp = t1[hash1]; t1[hash1] = x; x = temp; int hash2 = h2(x, 0, x.length); if (t2[hash2] == null) { t2[hash2] = x; return null; } // swap x and t2[h2(x)] temp = t2[hash2]; t2[hash2] = x; x = temp; if (x == null) { break; } } return x; } /** * first hash function */ private int h1(byte[] b, int start, int len) { // AND hash with mask to 0 out sign bit to make sure it's positive. // Then we know taking the result mod n is in the range (0..n-1). return (hash(b, start, len, 0) & 0x7FFFFFFF) % n; } /** * second hash function */ private int h2(byte[] b, int start, int len) { // AND hash with mask to 0 out sign bit to make sure it's positive. // Then we know taking the result mod n is in the range (0..n-1). // Include salt as argument so this hash function can be varied // if we need to rehash. return (hash(b, start, len, salt) & 0x7FFFFFFF) % n; } /** * In case of rehash, hash function h2 is changed by updating the * salt value passed in to the function hash(). */ private void updateHashSalt() { salt = gen.nextInt(0x7FFFFFFF); } private void rehash() { rehashCount++; if (rehashCount > 20) { throw new RuntimeException("Too many rehashes"); } updateHashSalt(); // Save original values if (prev1 == null) { prev1 = t1; prev2 = t2; } t1 = new byte[n][]; t2 = new byte[n][]; for (byte[] v : prev1) { if (v != null) { byte[] x = tryInsert(v); if (x != null) { rehash(); return; } } } for (byte[] v : prev2) { if (v != null) { byte[] x = tryInsert(v); if (x != null) { rehash(); return; } } } // We succeeded in adding all the values, so // clear the previous values recorded. prev1 = null; prev2 = null; } /** * This is adapted from the org.apache.hadoop.util.hash.JenkinsHash package. * The interface needed to be modified to suit the use here, by adding * a start offset parameter to the hash function. * * In the future, folding this back into the original Hadoop package should * be considered. This could could them import that package and use it. * The original comments from the source are below. * * taken from hashlittle() -- hash a variable-length key into a 32-bit value * * @param key the key (the unaligned variable-length array of bytes) * @param nbytes number of bytes to include in hash * @param initval can be any integer value * @return a 32-bit value. Every bit of the key affects every bit of the * return value. Two keys differing by one or two bits will have totally * different hash values. * * <p>The best hash table sizes are powers of 2. There is no need to do mod * a prime (mod is sooo slow!). If you need less than 32 bits, use a bitmask. * For example, if you need only 10 bits, do * <code>h = (h & hashmask(10));</code> * In which case, the hash table should have hashsize(10) elements. * * <p>If you are hashing n strings byte[][] k, do it like this: * for (int i = 0, h = 0; i < n; ++i) h = hash( k[i], h); * * <p>By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this * code any way you wish, private, educational, or commercial. It's free. * * <p>Use for hash table lookup, or anything where one collision in 2^^32 is * acceptable. Do NOT use for cryptographic purposes. */ @SuppressWarnings("fallthrough") private int hash(byte[] key, int start, int nbytes, int initval) { int length = nbytes; long a, b, c; // We use longs because we don't have unsigned ints a = b = c = (0x00000000deadbeefL + length + initval) & INT_MASK; int offset = start; for (; length > 12; offset += 12, length -= 12) { a = (a + (key[offset + 0] & BYTE_MASK)) & INT_MASK; a = (a + (((key[offset + 1] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; a = (a + (((key[offset + 2] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; a = (a + (((key[offset + 3] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; b = (b + (key[offset + 4] & BYTE_MASK)) & INT_MASK; b = (b + (((key[offset + 5] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; b = (b + (((key[offset + 6] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; b = (b + (((key[offset + 7] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; c = (c + (key[offset + 8] & BYTE_MASK)) & INT_MASK; c = (c + (((key[offset + 9] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; /* * mix -- mix 3 32-bit values reversibly. * This is reversible, so any information in (a,b,c) before mix() is * still in (a,b,c) after mix(). * * If four pairs of (a,b,c) inputs are run through mix(), or through * mix() in reverse, there are at least 32 bits of the output that * are sometimes the same for one pair and different for another pair. * * This was tested for: * - pairs that differed by one bit, by two bits, in any combination * of top bits of (a,b,c), or in any combination of bottom bits of * (a,b,c). * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as * is commonly produced by subtraction) look like a single 1-bit * difference. * - the base values were pseudorandom, all zero but one bit set, or * all zero plus a counter that starts at zero. * * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that * satisfy this are * 4 6 8 16 19 4 * 9 15 3 18 27 15 * 14 9 3 7 17 3 * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for * "differ" defined as + with a one-bit base and a two-bit delta. I * used http://burtleburtle.net/bob/hash/avalanche.html to choose * the operations, constants, and arrangements of the variables. * * This does not achieve avalanche. There are input bits of (a,b,c) * that fail to affect some output bits of (a,b,c), especially of a. * The most thoroughly mixed value is c, but it doesn't really even * achieve avalanche in c. * * This allows some parallelism. Read-after-writes are good at doubling * the number of bits affected, so the goal of mixing pulls in the * opposite direction as the goal of parallelism. I did what I could. * Rotates seem to cost as much as shifts on every machine I could lay * my hands on, and rotates are much kinder to the top and bottom bits, * so I used rotates. * * #define mix(a,b,c) \ * { \ * a -= c; a ^= rot(c, 4); c += b; \ * b -= a; b ^= rot(a, 6); a += c; \ * c -= b; c ^= rot(b, 8); b += a; \ * a -= c; a ^= rot(c,16); c += b; \ * b -= a; b ^= rot(a,19); a += c; \ * c -= b; c ^= rot(b, 4); b += a; \ * } * * mix(a,b,c); */ a = (a - c) & INT_MASK; a ^= rot(c, 4); c = (c + b) & INT_MASK; b = (b - a) & INT_MASK; b ^= rot(a, 6); a = (a + c) & INT_MASK; c = (c - b) & INT_MASK; c ^= rot(b, 8); b = (b + a) & INT_MASK; a = (a - c) & INT_MASK; a ^= rot(c,16); c = (c + b) & INT_MASK; b = (b - a) & INT_MASK; b ^= rot(a,19); a = (a + c) & INT_MASK; c = (c - b) & INT_MASK; c ^= rot(b, 4); b = (b + a) & INT_MASK; } //-------------------------------- last block: affect all 32 bits of (c) switch (length) { // all the case statements fall through case 12: c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; case 11: c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; case 10: c = (c + (((key[offset + 9] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; case 9: c = (c + (key[offset + 8] & BYTE_MASK)) & INT_MASK; case 8: b = (b + (((key[offset + 7] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; case 7: b = (b + (((key[offset + 6] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; case 6: b = (b + (((key[offset + 5] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; case 5: b = (b + (key[offset + 4] & BYTE_MASK)) & INT_MASK; case 4: a = (a + (((key[offset + 3] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK; case 3: a = (a + (((key[offset + 2] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK; case 2: a = (a + (((key[offset + 1] & BYTE_MASK) << 8) & INT_MASK)) & INT_MASK; case 1: a = (a + (key[offset + 0] & BYTE_MASK)) & INT_MASK; break; case 0: return (int)(c & INT_MASK); } /* * final -- final mixing of 3 32-bit values (a,b,c) into c * * Pairs of (a,b,c) values differing in only a few bits will usually * produce values of c that look totally different. This was tested for * - pairs that differed by one bit, by two bits, in any combination * of top bits of (a,b,c), or in any combination of bottom bits of * (a,b,c). * * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as * is commonly produced by subtraction) look like a single 1-bit * difference. * * - the base values were pseudorandom, all zero but one bit set, or * all zero plus a counter that starts at zero. * * These constants passed: * 14 11 25 16 4 14 24 * 12 14 25 16 4 14 24 * and these came close: * 4 8 15 26 3 22 24 * 10 8 15 26 3 22 24 * 11 8 15 26 3 22 24 * * #define final(a,b,c) \ * { * c ^= b; c -= rot(b,14); \ * a ^= c; a -= rot(c,11); \ * b ^= a; b -= rot(a,25); \ * c ^= b; c -= rot(b,16); \ * a ^= c; a -= rot(c,4); \ * b ^= a; b -= rot(a,14); \ * c ^= b; c -= rot(b,24); \ * } * */ c ^= b; c = (c - rot(b,14)) & INT_MASK; a ^= c; a = (a - rot(c,11)) & INT_MASK; b ^= a; b = (b - rot(a,25)) & INT_MASK; c ^= b; c = (c - rot(b,16)) & INT_MASK; a ^= c; a = (a - rot(c,4)) & INT_MASK; b ^= a; b = (b - rot(a,14)) & INT_MASK; c ^= b; c = (c - rot(b,24)) & INT_MASK; return (int)(c & INT_MASK); } private static long rot(long val, int pos) { return ((Integer.rotateLeft( (int)(val & INT_MASK), pos)) & INT_MASK); } }