/******************************************************************************* * Copyright (c) 2000, 2004 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.internal.compiler.lookup; import org.eclipse.jdt.core.compiler.CharOperation; import org.eclipse.jdt.internal.compiler.ast.CompilationUnitDeclaration; import org.eclipse.jdt.internal.compiler.ast.Wildcard; import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants; import org.eclipse.jdt.internal.compiler.env.*; import org.eclipse.jdt.internal.compiler.impl.CompilerOptions; import org.eclipse.jdt.internal.compiler.impl.ITypeRequestor; import org.eclipse.jdt.internal.compiler.problem.ProblemReporter; import org.eclipse.jdt.internal.compiler.util.HashtableOfPackage; import org.eclipse.jdt.internal.compiler.util.SimpleLookupTable; public class LookupEnvironment implements BaseTypes, ProblemReasons, TypeConstants { public CompilerOptions options; public ProblemReporter problemReporter; public ITypeRequestor typeRequestor; PackageBinding defaultPackage; ImportBinding[] defaultImports; HashtableOfPackage knownPackages; static final ProblemPackageBinding TheNotFoundPackage = new ProblemPackageBinding(CharOperation.NO_CHAR, NotFound); static final ProblemReferenceBinding TheNotFoundType = new ProblemReferenceBinding(CharOperation.NO_CHAR, NotFound); public INameEnvironment nameEnvironment; private MethodVerifier verifier; private ArrayBinding[][] uniqueArrayBindings; private SimpleLookupTable uniqueParameterizedTypeBindings; private SimpleLookupTable uniqueRawTypeBindings; private SimpleLookupTable uniqueWildcardBindings; private CompilationUnitDeclaration[] units = new CompilationUnitDeclaration[4]; private int lastUnitIndex = -1; private int lastCompletedUnitIndex = -1; public CompilationUnitDeclaration unitBeingCompleted = null; // only set while completing units // indicate in which step on the compilation we are. // step 1 : build the reference binding // step 2 : conect the hierarchy (connect bindings) // step 3 : build fields and method bindings. private int stepCompleted; final static int BUILD_TYPE_HIERARCHY = 1; final static int CHECK_AND_SET_IMPORTS = 2; final static int CONNECT_TYPE_HIERARCHY = 3; final static int BUILD_FIELDS_AND_METHODS = 4; // shared byte[]'s used by ClassFile to avoid allocating MBs during a build public boolean sharedArraysUsed = true; // set to false once actual arrays are allocated public byte[] sharedClassFileHeader = null; public byte[] sharedClassFileContents = null; public LookupEnvironment(ITypeRequestor typeRequestor, CompilerOptions options, ProblemReporter problemReporter, INameEnvironment nameEnvironment) { this.typeRequestor = typeRequestor; this.options = options; this.problemReporter = problemReporter; this.defaultPackage = new PackageBinding(this); // assume the default package always exists this.defaultImports = null; this.nameEnvironment = nameEnvironment; this.knownPackages = new HashtableOfPackage(); this.uniqueArrayBindings = new ArrayBinding[5][]; this.uniqueArrayBindings[0] = new ArrayBinding[50]; // start off the most common 1 dimension array @ 50 this.uniqueParameterizedTypeBindings = new SimpleLookupTable(3); this.uniqueRawTypeBindings = new SimpleLookupTable(3); this.uniqueWildcardBindings = new SimpleLookupTable(3); } /* Ask the oracle for a type which corresponds to the compoundName. * Answer null if the name cannot be found. */ public ReferenceBinding askForType(char[][] compoundName) { NameEnvironmentAnswer answer = nameEnvironment.findType(compoundName); if (answer == null) return null; if (answer.isBinaryType()) // the type was found as a .class file typeRequestor.accept(answer.getBinaryType(), computePackageFrom(compoundName)); else if (answer.isCompilationUnit()) // the type was found as a .java file, try to build it then search the cache typeRequestor.accept(answer.getCompilationUnit()); else if (answer.isSourceType()) // the type was found as a source model typeRequestor.accept(answer.getSourceTypes(), computePackageFrom(compoundName)); return getCachedType(compoundName); } /* Ask the oracle for a type named name in the packageBinding. * Answer null if the name cannot be found. */ ReferenceBinding askForType(PackageBinding packageBinding, char[] name) { if (packageBinding == null) { if (defaultPackage == null) return null; packageBinding = defaultPackage; } NameEnvironmentAnswer answer = nameEnvironment.findType(name, packageBinding.compoundName); if (answer == null) return null; if (answer.isBinaryType()) // the type was found as a .class file typeRequestor.accept(answer.getBinaryType(), packageBinding); else if (answer.isCompilationUnit()) // the type was found as a .java file, try to build it then search the cache typeRequestor.accept(answer.getCompilationUnit()); else if (answer.isSourceType()) // the type was found as a source model typeRequestor.accept(answer.getSourceTypes(), packageBinding); return packageBinding.getType0(name); } /* Create the initial type bindings for the compilation unit. * * See completeTypeBindings() for a description of the remaining steps * * NOTE: This method can be called multiple times as additional source files are needed */ public void buildTypeBindings(CompilationUnitDeclaration unit) { CompilationUnitScope scope = new CompilationUnitScope(unit, this); scope.buildTypeBindings(); int unitsLength = units.length; if (++lastUnitIndex >= unitsLength) System.arraycopy(units, 0, units = new CompilationUnitDeclaration[2 * unitsLength], 0, unitsLength); units[lastUnitIndex] = unit; } /* Cache the binary type since we know it is needed during this compile. * * Answer the created BinaryTypeBinding or null if the type is already in the cache. */ public BinaryTypeBinding cacheBinaryType(IBinaryType binaryType) { return cacheBinaryType(binaryType, true); } /* Cache the binary type since we know it is needed during this compile. * * Answer the created BinaryTypeBinding or null if the type is already in the cache. */ public BinaryTypeBinding cacheBinaryType(IBinaryType binaryType, boolean needFieldsAndMethods) { char[][] compoundName = CharOperation.splitOn('/', binaryType.getName()); ReferenceBinding existingType = getCachedType(compoundName); if (existingType == null || existingType instanceof UnresolvedReferenceBinding) // only add the binary type if its not already in the cache return createBinaryTypeFrom(binaryType, computePackageFrom(compoundName), needFieldsAndMethods); return null; // the type already exists & can be retrieved from the cache } /* * 1. Connect the type hierarchy for the type bindings created for parsedUnits. * 2. Create the field bindings * 3. Create the method bindings */ /* We know each known compilationUnit is free of errors at this point... * * Each step will create additional bindings unless a problem is detected, in which * case either the faulty import/superinterface/field/method will be skipped or a * suitable replacement will be substituted (such as Object for a missing superclass) */ public void completeTypeBindings() { stepCompleted = BUILD_TYPE_HIERARCHY; for (int i = this.lastCompletedUnitIndex + 1; i <= this.lastUnitIndex; i++) { (this.unitBeingCompleted = this.units[i]).scope.checkAndSetImports(); } stepCompleted = CHECK_AND_SET_IMPORTS; for (int i = this.lastCompletedUnitIndex + 1; i <= this.lastUnitIndex; i++) { (this.unitBeingCompleted = this.units[i]).scope.connectTypeHierarchy(); } stepCompleted = CONNECT_TYPE_HIERARCHY; for (int i = this.lastCompletedUnitIndex + 1; i <= this.lastUnitIndex; i++) { (this.unitBeingCompleted = this.units[i]).scope.buildFieldsAndMethods(); this.units[i] = null; // release unnecessary reference to the parsed unit } stepCompleted = BUILD_FIELDS_AND_METHODS; this.lastCompletedUnitIndex = this.lastUnitIndex; this.unitBeingCompleted = null; } /* * 1. Connect the type hierarchy for the type bindings created for parsedUnits. * 2. Create the field bindings * 3. Create the method bindings */ /* * Each step will create additional bindings unless a problem is detected, in which * case either the faulty import/superinterface/field/method will be skipped or a * suitable replacement will be substituted (such as Object for a missing superclass) */ public void completeTypeBindings(CompilationUnitDeclaration parsedUnit) { if (stepCompleted == BUILD_FIELDS_AND_METHODS) { // This can only happen because the original set of units are completely built and // are now being processed, so we want to treat all the additional units as a group // until they too are completely processed. completeTypeBindings(); } else { if (parsedUnit.scope == null) return; // parsing errors were too severe if (stepCompleted >= CHECK_AND_SET_IMPORTS) (this.unitBeingCompleted = parsedUnit).scope.checkAndSetImports(); if (stepCompleted >= CONNECT_TYPE_HIERARCHY) (this.unitBeingCompleted = parsedUnit).scope.connectTypeHierarchy(); this.unitBeingCompleted = null; } } /* * Used by other compiler tools which do not start by calling completeTypeBindings(). * * 1. Connect the type hierarchy for the type bindings created for parsedUnits. * 2. Create the field bindings * 3. Create the method bindings */ public void completeTypeBindings(CompilationUnitDeclaration parsedUnit, boolean buildFieldsAndMethods) { if (parsedUnit.scope == null) return; // parsing errors were too severe (this.unitBeingCompleted = parsedUnit).scope.checkAndSetImports(); parsedUnit.scope.connectTypeHierarchy(); if (buildFieldsAndMethods) parsedUnit.scope.buildFieldsAndMethods(); this.unitBeingCompleted = null; } private PackageBinding computePackageFrom(char[][] constantPoolName) { if (constantPoolName.length == 1) return defaultPackage; PackageBinding packageBinding = getPackage0(constantPoolName[0]); if (packageBinding == null || packageBinding == TheNotFoundPackage) { packageBinding = new PackageBinding(constantPoolName[0], this); knownPackages.put(constantPoolName[0], packageBinding); } for (int i = 1, length = constantPoolName.length - 1; i < length; i++) { PackageBinding parent = packageBinding; if ((packageBinding = parent.getPackage0(constantPoolName[i])) == null || packageBinding == TheNotFoundPackage) { packageBinding = new PackageBinding(CharOperation.subarray(constantPoolName, 0, i + 1), parent, this); parent.addPackage(packageBinding); } } return packageBinding; } /* Used to guarantee array type identity. */ ArrayBinding createArrayType(TypeBinding type, int dimensionCount) { if (type instanceof LocalTypeBinding) // cache local type arrays with the local type itself return ((LocalTypeBinding) type).createArrayType(dimensionCount); // find the array binding cache for this dimension int dimIndex = dimensionCount - 1; int length = uniqueArrayBindings.length; ArrayBinding[] arrayBindings; if (dimIndex < length) { if ((arrayBindings = uniqueArrayBindings[dimIndex]) == null) uniqueArrayBindings[dimIndex] = arrayBindings = new ArrayBinding[10]; } else { System.arraycopy( uniqueArrayBindings, 0, uniqueArrayBindings = new ArrayBinding[dimensionCount][], 0, length); uniqueArrayBindings[dimIndex] = arrayBindings = new ArrayBinding[10]; } // find the cached array binding for this leaf component type (if any) int index = -1; length = arrayBindings.length; while (++index < length) { ArrayBinding currentBinding = arrayBindings[index]; if (currentBinding == null) // no matching array, but space left return arrayBindings[index] = new ArrayBinding(type, dimensionCount, this); if (currentBinding.leafComponentType == type) return currentBinding; } // no matching array, no space left System.arraycopy( arrayBindings, 0, (arrayBindings = new ArrayBinding[length * 2]), 0, length); uniqueArrayBindings[dimIndex] = arrayBindings; return arrayBindings[length] = new ArrayBinding(type, dimensionCount, this); } public BinaryTypeBinding createBinaryTypeFrom(IBinaryType binaryType, PackageBinding packageBinding) { return createBinaryTypeFrom(binaryType, packageBinding, true); } public BinaryTypeBinding createBinaryTypeFrom(IBinaryType binaryType, PackageBinding packageBinding, boolean needFieldsAndMethods) { BinaryTypeBinding binaryBinding = new BinaryTypeBinding(packageBinding, binaryType, this); // resolve any array bindings which reference the unresolvedType ReferenceBinding cachedType = packageBinding.getType0(binaryBinding.compoundName[binaryBinding.compoundName.length - 1]); if (cachedType != null) { if (cachedType.isBinaryBinding()) // sanity check before the cast... at this point the cache should ONLY contain unresolved types return (BinaryTypeBinding) cachedType; ((UnresolvedReferenceBinding) cachedType).setResolvedType(binaryBinding, this); } packageBinding.addType(binaryBinding); binaryBinding.cachePartsFrom(binaryType, needFieldsAndMethods); return binaryBinding; } /* Used to create packages from the package statement. */ PackageBinding createPackage(char[][] compoundName) { PackageBinding packageBinding = getPackage0(compoundName[0]); if (packageBinding == null || packageBinding == TheNotFoundPackage) { packageBinding = new PackageBinding(compoundName[0], this); knownPackages.put(compoundName[0], packageBinding); } for (int i = 1, length = compoundName.length; i < length; i++) { // check to see if it collides with a known type... // this case can only happen if the package does not exist as a directory in the file system // otherwise when the source type was defined, the correct error would have been reported // unless its an unresolved type which is referenced from an inconsistent class file ReferenceBinding type = packageBinding.getType0(compoundName[i]); if (type != null && type != TheNotFoundType && !(type instanceof UnresolvedReferenceBinding)) return null; PackageBinding parent = packageBinding; if ((packageBinding = parent.getPackage0(compoundName[i])) == null || packageBinding == TheNotFoundPackage) { // if the package is unknown, check to see if a type exists which would collide with the new package // catches the case of a package statement of: package java.lang.Object; // since the package can be added after a set of source files have already been compiled, we need // whenever a package statement is encountered if (nameEnvironment.findType(compoundName[i], parent.compoundName) != null) return null; packageBinding = new PackageBinding(CharOperation.subarray(compoundName, 0, i + 1), parent, this); parent.addPackage(packageBinding); } } return packageBinding; } public ParameterizedTypeBinding createParameterizedType(ReferenceBinding genericType, TypeBinding[] typeArguments, ReferenceBinding enclosingType) { // cached info is array of already created parameterized types for this type ParameterizedTypeBinding[] cachedInfo = (ParameterizedTypeBinding[])this.uniqueParameterizedTypeBindings.get(genericType); int argLength = typeArguments == null ? 0: typeArguments.length; boolean needToGrow = false; if (cachedInfo != null){ nextCachedType : // iterate existing parameterized for reusing one with same type arguments if any for (int i = 0, max = cachedInfo.length; i < max; i++){ ParameterizedTypeBinding cachedType = cachedInfo[i]; if (cachedType.type != genericType) continue nextCachedType; // remain of unresolved type if (cachedType.enclosingType() != enclosingType) continue nextCachedType; TypeBinding[] cachedArguments = cachedType.arguments; int cachedArgLength = cachedArguments == null ? 0 : cachedArguments.length; if (argLength != cachedArgLength) continue nextCachedType; // would be an error situation (from unresolved binaries) for (int j = 0; j < cachedArgLength; j++){ if (typeArguments[j] != cachedArguments[j]) continue nextCachedType; } // all arguments match, reuse current return cachedType; } needToGrow = true; } else { cachedInfo = new ParameterizedTypeBinding[1]; this.uniqueParameterizedTypeBindings.put(genericType, cachedInfo); } // grow cache ? if (needToGrow){ int length = cachedInfo.length; System.arraycopy(cachedInfo, 0, cachedInfo = new ParameterizedTypeBinding[length+1], 0, length); this.uniqueParameterizedTypeBindings.put(genericType, cachedInfo); } // add new binding ParameterizedTypeBinding parameterizedType = new ParameterizedTypeBinding(genericType,typeArguments, enclosingType, this); cachedInfo[cachedInfo.length-1] = parameterizedType; return parameterizedType; } public RawTypeBinding createRawType(ReferenceBinding genericType, ReferenceBinding enclosingType) { // cached info is array of already created raw types for this type RawTypeBinding[] cachedInfo = (RawTypeBinding[])this.uniqueRawTypeBindings.get(genericType); boolean needToGrow = false; if (cachedInfo != null){ nextCachedType : // iterate existing parameterized for reusing one with same type arguments if any for (int i = 0, max = cachedInfo.length; i < max; i++){ RawTypeBinding cachedType = cachedInfo[i]; if (cachedType.type != genericType) continue nextCachedType; // remain of unresolved type if (cachedType.enclosingType() != enclosingType) continue nextCachedType; // all enclosing type match, reuse current return cachedType; } needToGrow = true; } else { cachedInfo = new RawTypeBinding[1]; this.uniqueRawTypeBindings.put(genericType, cachedInfo); } // grow cache ? if (needToGrow){ int length = cachedInfo.length; System.arraycopy(cachedInfo, 0, cachedInfo = new RawTypeBinding[length+1], 0, length); this.uniqueRawTypeBindings.put(genericType, cachedInfo); } // add new binding RawTypeBinding rawType = new RawTypeBinding(genericType, enclosingType, this); cachedInfo[cachedInfo.length-1] = rawType; return rawType; } public WildcardBinding createWildcard(ReferenceBinding genericType, int rank, TypeBinding bound, int kind) { // cached info is array of already created wildcard types for this type WildcardBinding[] cachedInfo = (WildcardBinding[])this.uniqueWildcardBindings.get(genericType); boolean needToGrow = false; if (cachedInfo != null){ nextCachedType : // iterate existing wildcards for reusing one with same information if any for (int i = 0, max = cachedInfo.length; i < max; i++){ WildcardBinding cachedType = cachedInfo[i]; if (cachedType.genericType != genericType) continue nextCachedType; // remain of unresolved type if (cachedType.rank != rank) continue nextCachedType; if (cachedType.kind != kind) continue nextCachedType; if (cachedType.bound != bound) continue nextCachedType; // all match, reuse current return cachedType; } needToGrow = true; } else { cachedInfo = new WildcardBinding[1]; this.uniqueWildcardBindings.put(genericType, cachedInfo); } // grow cache ? if (needToGrow){ int length = cachedInfo.length; System.arraycopy(cachedInfo, 0, cachedInfo = new WildcardBinding[length+1], 0, length); this.uniqueWildcardBindings.put(genericType, cachedInfo); } // add new binding WildcardBinding wildcard = new WildcardBinding(genericType, rank, bound, kind, this); cachedInfo[cachedInfo.length-1] = wildcard; return wildcard; } /* Answer the type for the compoundName if it exists in the cache. * Answer theNotFoundType if it could not be resolved the first time * it was looked up, otherwise answer null. * * NOTE: Do not use for nested types... the answer is NOT the same for a.b.C or a.b.C.D.E * assuming C is a type in both cases. In the a.b.C.D.E case, null is the answer. */ public ReferenceBinding getCachedType(char[][] compoundName) { if (compoundName.length == 1) { if (defaultPackage == null) return null; return defaultPackage.getType0(compoundName[0]); } PackageBinding packageBinding = getPackage0(compoundName[0]); if (packageBinding == null || packageBinding == TheNotFoundPackage) return null; for (int i = 1, packageLength = compoundName.length - 1; i < packageLength; i++) if ((packageBinding = packageBinding.getPackage0(compoundName[i])) == null || packageBinding == TheNotFoundPackage) return null; return packageBinding.getType0(compoundName[compoundName.length - 1]); } /* Answer the top level package named name if it exists in the cache. * Answer theNotFoundPackage if it could not be resolved the first time * it was looked up, otherwise answer null. * * NOTE: Senders must convert theNotFoundPackage into a real problem * package if its to returned. */ PackageBinding getPackage0(char[] name) { return knownPackages.get(name); } /* Answer the top level package named name. * Ask the oracle for the package if its not in the cache. * Answer null if the package cannot be found. */ PackageBinding getTopLevelPackage(char[] name) { PackageBinding packageBinding = getPackage0(name); if (packageBinding != null) { if (packageBinding == TheNotFoundPackage) return null; return packageBinding; } if (nameEnvironment.isPackage(null, name)) { knownPackages.put(name, packageBinding = new PackageBinding(name, this)); return packageBinding; } knownPackages.put(name, TheNotFoundPackage); // saves asking the oracle next time return null; } /* Answer the type corresponding to the compoundName. * Ask the oracle for the type if its not in the cache. * Answer null if the type cannot be found... likely a fatal error. */ public ReferenceBinding getType(char[][] compoundName) { ReferenceBinding referenceBinding; if (compoundName.length == 1) { if (defaultPackage == null) return null; if ((referenceBinding = defaultPackage.getType0(compoundName[0])) == null) { PackageBinding packageBinding = getPackage0(compoundName[0]); if (packageBinding != null && packageBinding != TheNotFoundPackage) return null; // collides with a known package... should not call this method in such a case referenceBinding = askForType(defaultPackage, compoundName[0]); } } else { PackageBinding packageBinding = getPackage0(compoundName[0]); if (packageBinding == TheNotFoundPackage) return null; if (packageBinding != null) { for (int i = 1, packageLength = compoundName.length - 1; i < packageLength; i++) { if ((packageBinding = packageBinding.getPackage0(compoundName[i])) == null) break; if (packageBinding == TheNotFoundPackage) return null; } } if (packageBinding == null) referenceBinding = askForType(compoundName); else if ((referenceBinding = packageBinding.getType0(compoundName[compoundName.length - 1])) == null) referenceBinding = askForType(packageBinding, compoundName[compoundName.length - 1]); } if (referenceBinding == null || referenceBinding == TheNotFoundType) return null; referenceBinding = BinaryTypeBinding.resolveType(referenceBinding, this, false); // no raw conversion for now // compoundName refers to a nested type incorrectly (for example, package1.A$B) if (referenceBinding.isNestedType()) return new ProblemReferenceBinding(compoundName, InternalNameProvided); return referenceBinding; } private TypeBinding[] getTypeArgumentsFromSignature(SignatureWrapper wrapper, TypeVariableBinding[] staticVariables, ReferenceBinding enclosingType, ReferenceBinding genericType) { java.util.ArrayList args = new java.util.ArrayList(2); int rank = 0; do { args.add(getTypeFromVariantTypeSignature(wrapper, staticVariables, enclosingType, genericType, rank++)); } while (wrapper.signature[wrapper.start] != '>'); wrapper.start++; // skip '>' TypeBinding[] typeArguments = new TypeBinding[args.size()]; args.toArray(typeArguments); return typeArguments; } /* Answer the type corresponding to the name from the binary file. * Does not ask the oracle for the type if its not found in the cache... instead an * unresolved type is returned which must be resolved before used. * * NOTE: Does NOT answer base types nor array types! * * NOTE: Aborts compilation if the class file cannot be found. */ ReferenceBinding getTypeFromConstantPoolName(char[] signature, int start, int end, boolean isParameterized) { if (end == -1) end = signature.length; char[][] compoundName = CharOperation.splitOn('/', signature, start, end); ReferenceBinding binding = getCachedType(compoundName); if (binding == null) { PackageBinding packageBinding = computePackageFrom(compoundName); binding = new UnresolvedReferenceBinding(compoundName, packageBinding); packageBinding.addType(binding); } else if (binding == TheNotFoundType) { problemReporter.isClassPathCorrect(compoundName, null); return null; // will not get here since the above error aborts the compilation } else if (!isParameterized && binding.isGenericType()) { // check raw type, only for resolved types binding = createRawType(binding, null); } return binding; } /* Answer the type corresponding to the signature from the binary file. * Does not ask the oracle for the type if its not found in the cache... instead an * unresolved type is returned which must be resolved before used. * * NOTE: Does answer base types & array types. * * NOTE: Aborts compilation if the class file cannot be found. */ TypeBinding getTypeFromSignature(char[] signature, int start, int end, boolean isParameterized, TypeBinding enclosingType) { int dimension = 0; while (signature[start] == '[') { start++; dimension++; } if (end == -1) end = signature.length - 1; // Just switch on signature[start] - the L case is the else TypeBinding binding = null; if (start == end) { switch (signature[start]) { case 'I' : binding = IntBinding; break; case 'Z' : binding = BooleanBinding; break; case 'V' : binding = VoidBinding; break; case 'C' : binding = CharBinding; break; case 'D' : binding = DoubleBinding; break; case 'B' : binding = ByteBinding; break; case 'F' : binding = FloatBinding; break; case 'J' : binding = LongBinding; break; case 'S' : binding = ShortBinding; break; default : problemReporter.corruptedSignature(enclosingType, signature, start); // will never reach here, since error will cause abort } } else { binding = getTypeFromConstantPoolName(signature, start + 1, end, isParameterized); } if (dimension == 0) return binding; return createArrayType(binding, dimension); } TypeBinding getTypeFromTypeSignature(SignatureWrapper wrapper, TypeVariableBinding[] staticVariables, ReferenceBinding enclosingType) { // TypeVariableSignature = 'T' Identifier ';' // ArrayTypeSignature = '[' TypeSignature // ClassTypeSignature = 'L' Identifier TypeArgs(optional) ';' // or ClassTypeSignature '.' 'L' Identifier TypeArgs(optional) ';' // TypeArgs = '<' VariantTypeSignature VariantTypeSignatures '>' int dimension = 0; while (wrapper.signature[wrapper.start] == '[') { wrapper.start++; dimension++; } if (wrapper.signature[wrapper.start] == 'T') { int varStart = wrapper.start + 1; int varEnd = wrapper.computeEnd(); for (int i = staticVariables.length; --i >= 0;) if (CharOperation.equals(staticVariables[i].sourceName, wrapper.signature, varStart, varEnd)) return dimension == 0 ? (TypeBinding) staticVariables[i] : createArrayType(staticVariables[i], dimension); ReferenceBinding initialType = enclosingType; do { if (enclosingType instanceof BinaryTypeBinding) { // per construction can only be binary type binding TypeVariableBinding[] enclosingVariables = ((BinaryTypeBinding)enclosingType).typeVariables; // do not trigger resolution of variables for (int i = enclosingVariables.length; --i >= 0;) if (CharOperation.equals(enclosingVariables[i].sourceName, wrapper.signature, varStart, varEnd)) return dimension == 0 ? (TypeBinding) enclosingVariables[i] : createArrayType(enclosingVariables[i], dimension); } } while ((enclosingType = enclosingType.enclosingType()) != null); problemReporter.undefinedTypeVariableSignature(CharOperation.subarray(wrapper.signature, varStart, varEnd), initialType); return null; // cannot reach this, since previous problem will abort compilation } TypeBinding type = getTypeFromSignature(wrapper.signature, wrapper.start, wrapper.computeEnd(), true, enclosingType); if (wrapper.end != wrapper.bracket) return dimension == 0 ? type : createArrayType(type, dimension); // type must be a ReferenceBinding at this point, cannot be a BaseTypeBinding or ArrayTypeBinding ReferenceBinding actualType = (ReferenceBinding) type; TypeBinding[] typeArguments = getTypeArgumentsFromSignature(wrapper, staticVariables, enclosingType, actualType); ParameterizedTypeBinding parameterizedType = createParameterizedType(actualType, typeArguments, null); while (wrapper.signature[wrapper.start] == '.') { wrapper.start++; // skip '.' char[] memberName = wrapper.nextWord(); BinaryTypeBinding.resolveType(parameterizedType, this, false); ReferenceBinding memberType = parameterizedType.type.getMemberType(memberName); if (wrapper.signature[wrapper.start] == '<') { wrapper.start++; // skip '<' typeArguments = getTypeArgumentsFromSignature(wrapper, staticVariables, enclosingType, memberType); } else { typeArguments = null; } parameterizedType = createParameterizedType(memberType, typeArguments, parameterizedType); } wrapper.start++; // skip ';' return dimension == 0 ? (TypeBinding) parameterizedType : createArrayType(parameterizedType, dimension); } TypeBinding getTypeFromVariantTypeSignature( SignatureWrapper wrapper, TypeVariableBinding[] staticVariables, ReferenceBinding enclosingType, ReferenceBinding genericType, int rank) { // VariantTypeSignature = '-' TypeSignature // or '+' TypeSignature // or TypeSignature // or '*' switch (wrapper.signature[wrapper.start]) { case '-' : // ? super aType wrapper.start++; TypeBinding bound = getTypeFromTypeSignature(wrapper, staticVariables, enclosingType); return createWildcard(genericType, rank, bound, Wildcard.SUPER); case '+' : // ? extends aType wrapper.start++; bound = getTypeFromTypeSignature(wrapper, staticVariables, enclosingType); return createWildcard(genericType, rank, bound, Wildcard.EXTENDS); case '*' : // ? wrapper.start++; return createWildcard(genericType, rank, null, Wildcard.UNBOUND); default : return getTypeFromTypeSignature(wrapper, staticVariables, enclosingType); } } /* Ask the oracle if a package exists named name in the package named compoundName. */ boolean isPackage(char[][] compoundName, char[] name) { if (compoundName == null || compoundName.length == 0) return nameEnvironment.isPackage(null, name); return nameEnvironment.isPackage(compoundName, name); } // The method verifier is lazily initialized to guarantee the receiver, the compiler & the oracle are ready. public MethodVerifier methodVerifier() { if (verifier == null) verifier = this.options.sourceLevel < ClassFileConstants.JDK1_5 ? new MethodVerifier(this) : new MethodVerifier15(this); return verifier; } public void reset() { this.defaultPackage = new PackageBinding(this); // assume the default package always exists this.defaultImports = null; this.knownPackages = new HashtableOfPackage(); this.verifier = null; for (int i = this.uniqueArrayBindings.length; --i >= 0;) { ArrayBinding[] arrayBindings = this.uniqueArrayBindings[i]; if (arrayBindings != null) for (int j = arrayBindings.length; --j >= 0;) arrayBindings[j] = null; } this.uniqueParameterizedTypeBindings = new SimpleLookupTable(3); this.uniqueRawTypeBindings = new SimpleLookupTable(3); this.uniqueWildcardBindings = new SimpleLookupTable(3); for (int i = this.units.length; --i >= 0;) this.units[i] = null; this.lastUnitIndex = -1; this.lastCompletedUnitIndex = -1; this.unitBeingCompleted = null; // in case AbortException occurred // name environment has a longer life cycle, and must be reset in // the code which created it. } void updateCaches(UnresolvedReferenceBinding unresolvedType, ReferenceBinding resolvedType) { // walk all the unique collections & replace the unresolvedType with the resolvedType // must prevent 2 entries so == still works (1 containing the unresolvedType and the other containing the resolvedType) if (uniqueParameterizedTypeBindings.get(unresolvedType) != null) { // update the key Object[] keys = uniqueParameterizedTypeBindings.keyTable; for (int i = 0, l = keys.length; i < l; i++) { if (keys[i] == unresolvedType) { keys[i] = resolvedType; // hashCode is based on compoundName so this works - cannot be raw since type of parameterized type break; } } } if (uniqueWildcardBindings.get(unresolvedType) != null) { // update the key Object[] keys = uniqueWildcardBindings.keyTable; for (int i = 0, l = keys.length; i < l; i++) { if (keys[i] == unresolvedType) { keys[i] = resolvedType.isGenericType() ? createRawType(resolvedType, null) : resolvedType; // hashCode is based on compoundName so this works break; } } } } }