/******************************************************************************* * Copyright (c) 2000, 2004 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.internal.compiler.ast; import org.eclipse.jdt.core.compiler.*; import org.eclipse.jdt.internal.compiler.ASTVisitor; import org.eclipse.jdt.internal.compiler.*; import org.eclipse.jdt.internal.compiler.impl.*; import org.eclipse.jdt.internal.compiler.codegen.*; import org.eclipse.jdt.internal.compiler.flow.*; import org.eclipse.jdt.internal.compiler.lookup.*; import org.eclipse.jdt.internal.compiler.parser.*; import org.eclipse.jdt.internal.compiler.problem.*; public class TypeDeclaration extends Statement implements ProblemSeverities, ReferenceContext { public static final char[] ANONYMOUS_EMPTY_NAME = new char[] {}; public int modifiers = AccDefault; public int modifiersSourceStart; public Annotation[] annotations; public char[] name; public TypeReference superclass; public TypeReference[] superInterfaces; public FieldDeclaration[] fields; public AbstractMethodDeclaration[] methods; public TypeDeclaration[] memberTypes; public SourceTypeBinding binding; public ClassScope scope; public MethodScope initializerScope; public MethodScope staticInitializerScope; public boolean ignoreFurtherInvestigation = false; public int maxFieldCount; public int declarationSourceStart; public int declarationSourceEnd; public int bodyStart; public int bodyEnd; // doesn't include the trailing comment if any. protected boolean hasBeenGenerated = false; public CompilationResult compilationResult; public MethodDeclaration[] missingAbstractMethods; public Javadoc javadoc; public QualifiedAllocationExpression allocation; // for anonymous only public TypeDeclaration enclosingType; // for member types only // 1.5 support public EnumDeclaration[] enums; public TypeParameter[] typeParameters; public TypeDeclaration(CompilationResult compilationResult){ this.compilationResult = compilationResult; } /* * We cause the compilation task to abort to a given extent. */ public void abort(int abortLevel, IProblem problem) { switch (abortLevel) { case AbortCompilation : throw new AbortCompilation(this.compilationResult, problem); case AbortCompilationUnit : throw new AbortCompilationUnit(this.compilationResult, problem); case AbortMethod : throw new AbortMethod(this.compilationResult, problem); default : throw new AbortType(this.compilationResult, problem); } } /** * This method is responsible for adding a <clinit> method declaration to the type method collections. * Note that this implementation is inserting it in first place (as VAJ or javac), and that this * impacts the behavior of the method ConstantPool.resetForClinit(int. int), in so far as * the latter will have to reset the constant pool state accordingly (if it was added first, it does * not need to preserve some of the method specific cached entries since this will be the first method). * inserts the clinit method declaration in the first position. * * @see org.eclipse.jdt.internal.compiler.codegen.ConstantPool#resetForClinit(int, int) */ public final void addClinit() { //see comment on needClassInitMethod if (needClassInitMethod()) { int length; AbstractMethodDeclaration[] methodDeclarations; if ((methodDeclarations = this.methods) == null) { length = 0; methodDeclarations = new AbstractMethodDeclaration[1]; } else { length = methodDeclarations.length; System.arraycopy( methodDeclarations, 0, (methodDeclarations = new AbstractMethodDeclaration[length + 1]), 1, length); } Clinit clinit = new Clinit(this.compilationResult); methodDeclarations[0] = clinit; // clinit is added in first location, so as to minimize the use of ldcw (big consumer of constant inits) clinit.declarationSourceStart = clinit.sourceStart = sourceStart; clinit.declarationSourceEnd = clinit.sourceEnd = sourceEnd; clinit.bodyEnd = sourceEnd; this.methods = methodDeclarations; } } /* * INTERNAL USE ONLY - Creates a fake method declaration for the corresponding binding. * It is used to report errors for missing abstract methods. */ public MethodDeclaration addMissingAbstractMethodFor(MethodBinding methodBinding) { TypeBinding[] argumentTypes = methodBinding.parameters; int argumentsLength = argumentTypes.length; //the constructor MethodDeclaration methodDeclaration = new MethodDeclaration(this.compilationResult); methodDeclaration.selector = methodBinding.selector; methodDeclaration.sourceStart = sourceStart; methodDeclaration.sourceEnd = sourceEnd; methodDeclaration.modifiers = methodBinding.getAccessFlags() & ~AccAbstract; if (argumentsLength > 0) { String baseName = "arg";//$NON-NLS-1$ Argument[] arguments = (methodDeclaration.arguments = new Argument[argumentsLength]); for (int i = argumentsLength; --i >= 0;) { arguments[i] = new Argument((baseName + i).toCharArray(), 0L, null /*type ref*/, AccDefault, false /*not vararg*/); } } //adding the constructor in the methods list if (this.missingAbstractMethods == null) { this.missingAbstractMethods = new MethodDeclaration[] { methodDeclaration }; } else { MethodDeclaration[] newMethods; System.arraycopy( this.missingAbstractMethods, 0, newMethods = new MethodDeclaration[this.missingAbstractMethods.length + 1], 1, this.missingAbstractMethods.length); newMethods[0] = methodDeclaration; this.missingAbstractMethods = newMethods; } //============BINDING UPDATE========================== methodDeclaration.binding = new MethodBinding( methodDeclaration.modifiers, //methodDeclaration methodBinding.selector, methodBinding.returnType, argumentsLength == 0 ? NoParameters : argumentTypes, //arguments bindings methodBinding.thrownExceptions, //exceptions binding); //declaringClass methodDeclaration.scope = new MethodScope(scope, methodDeclaration, true); methodDeclaration.bindArguments(); /* if (binding.methods == null) { binding.methods = new MethodBinding[] { methodDeclaration.binding }; } else { MethodBinding[] newMethods; System.arraycopy( binding.methods, 0, newMethods = new MethodBinding[binding.methods.length + 1], 1, binding.methods.length); newMethods[0] = methodDeclaration.binding; binding.methods = newMethods; }*/ //=================================================== return methodDeclaration; } /** * Flow analysis for a local innertype * */ public FlowInfo analyseCode( BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo) { if (ignoreFurtherInvestigation) return flowInfo; try { if (flowInfo.isReachable()) { bits |= IsReachableMASK; LocalTypeBinding localType = (LocalTypeBinding) binding; localType.setConstantPoolName(currentScope.compilationUnitScope().computeConstantPoolName(localType)); } manageEnclosingInstanceAccessIfNecessary(currentScope, flowInfo); updateMaxFieldCount(); // propagate down the max field count internalAnalyseCode(flowContext, flowInfo); } catch (AbortType e) { this.ignoreFurtherInvestigation = true; } return flowInfo; } /** * Flow analysis for a member innertype * */ public void analyseCode(ClassScope enclosingClassScope) { if (ignoreFurtherInvestigation) return; try { // propagate down the max field count updateMaxFieldCount(); internalAnalyseCode(null, FlowInfo.initial(maxFieldCount)); } catch (AbortType e) { this.ignoreFurtherInvestigation = true; } } /** * Flow analysis for a local member innertype * */ public void analyseCode( ClassScope currentScope, FlowContext flowContext, FlowInfo flowInfo) { if (ignoreFurtherInvestigation) return; try { if (flowInfo.isReachable()) { bits |= IsReachableMASK; LocalTypeBinding localType = (LocalTypeBinding) binding; localType.setConstantPoolName(currentScope.compilationUnitScope().computeConstantPoolName(localType)); } manageEnclosingInstanceAccessIfNecessary(currentScope, flowInfo); updateMaxFieldCount(); // propagate down the max field count internalAnalyseCode(flowContext, flowInfo); } catch (AbortType e) { this.ignoreFurtherInvestigation = true; } } /** * Flow analysis for a package member type * */ public void analyseCode(CompilationUnitScope unitScope) { if (ignoreFurtherInvestigation) return; try { internalAnalyseCode(null, FlowInfo.initial(maxFieldCount)); } catch (AbortType e) { this.ignoreFurtherInvestigation = true; } } /* * Check for constructor vs. method with no return type. * Answers true if at least one constructor is defined */ public boolean checkConstructors(Parser parser) { //if a constructor has not the name of the type, //convert it into a method with 'null' as its return type boolean hasConstructor = false; if (methods != null) { for (int i = methods.length; --i >= 0;) { AbstractMethodDeclaration am; if ((am = methods[i]).isConstructor()) { if (!CharOperation.equals(am.selector, name)) { // the constructor was in fact a method with no return type // unless an explicit constructor call was supplied ConstructorDeclaration c = (ConstructorDeclaration) am; if (c.constructorCall == null || c.constructorCall.isImplicitSuper()) { //changed to a method MethodDeclaration m = parser.convertToMethodDeclaration(c, this.compilationResult); methods[i] = m; } } else { if (this.isInterface()) { // report the problem and continue the parsing parser.problemReporter().interfaceCannotHaveConstructors( (ConstructorDeclaration) am); } hasConstructor = true; } } } } return hasConstructor; } public CompilationResult compilationResult() { return this.compilationResult; } public ConstructorDeclaration createsInternalConstructor( boolean needExplicitConstructorCall, boolean needToInsert) { //Add to method'set, the default constuctor that just recall the //super constructor with no arguments //The arguments' type will be positionned by the TC so just use //the default int instead of just null (consistency purpose) //the constructor ConstructorDeclaration constructor = new ConstructorDeclaration(this.compilationResult); constructor.isDefaultConstructor = true; constructor.selector = name; if (modifiers != AccDefault) { constructor.modifiers = (((this.bits & ASTNode.IsMemberTypeMASK) != 0) && (modifiers & AccPrivate) != 0) ? AccDefault : modifiers & AccVisibilityMASK; } //if you change this setting, please update the //SourceIndexer2.buildTypeDeclaration(TypeDeclaration,char[]) method constructor.declarationSourceStart = constructor.sourceStart = sourceStart; constructor.declarationSourceEnd = constructor.sourceEnd = constructor.bodyEnd = sourceEnd; //the super call inside the constructor if (needExplicitConstructorCall) { constructor.constructorCall = SuperReference.implicitSuperConstructorCall(); constructor.constructorCall.sourceStart = sourceStart; constructor.constructorCall.sourceEnd = sourceEnd; } //adding the constructor in the methods list if (needToInsert) { if (methods == null) { methods = new AbstractMethodDeclaration[] { constructor }; } else { AbstractMethodDeclaration[] newMethods; System.arraycopy( methods, 0, newMethods = new AbstractMethodDeclaration[methods.length + 1], 1, methods.length); newMethods[0] = constructor; methods = newMethods; } } return constructor; } // anonymous type constructor creation public MethodBinding createsInternalConstructorWithBinding(MethodBinding inheritedConstructorBinding) { //Add to method'set, the default constuctor that just recall the //super constructor with the same arguments String baseName = "$anonymous"; //$NON-NLS-1$ TypeBinding[] argumentTypes = inheritedConstructorBinding.parameters; int argumentsLength = argumentTypes.length; //the constructor ConstructorDeclaration cd = new ConstructorDeclaration(this.compilationResult); cd.selector = new char[] { 'x' }; //no maining cd.sourceStart = sourceStart; cd.sourceEnd = sourceEnd; cd.modifiers = modifiers & AccVisibilityMASK; cd.isDefaultConstructor = true; if (argumentsLength > 0) { Argument[] arguments = (cd.arguments = new Argument[argumentsLength]); for (int i = argumentsLength; --i >= 0;) { arguments[i] = new Argument((baseName + i).toCharArray(), 0L, null /*type ref*/, AccDefault, false /*not vararg*/); } } //the super call inside the constructor cd.constructorCall = SuperReference.implicitSuperConstructorCall(); cd.constructorCall.sourceStart = sourceStart; cd.constructorCall.sourceEnd = sourceEnd; if (argumentsLength > 0) { Expression[] args; args = cd.constructorCall.arguments = new Expression[argumentsLength]; for (int i = argumentsLength; --i >= 0;) { args[i] = new SingleNameReference((baseName + i).toCharArray(), 0L); } } //adding the constructor in the methods list if (methods == null) { methods = new AbstractMethodDeclaration[] { cd }; } else { AbstractMethodDeclaration[] newMethods; System.arraycopy( methods, 0, newMethods = new AbstractMethodDeclaration[methods.length + 1], 1, methods.length); newMethods[0] = cd; methods = newMethods; } //============BINDING UPDATE========================== cd.binding = new MethodBinding( cd.modifiers, //methodDeclaration argumentsLength == 0 ? NoParameters : argumentTypes, //arguments bindings inheritedConstructorBinding.thrownExceptions, //exceptions binding); //declaringClass cd.scope = new MethodScope(scope, cd, true); cd.bindArguments(); cd.constructorCall.resolve(cd.scope); if (binding.methods == null) { binding.methods = new MethodBinding[] { cd.binding }; } else { MethodBinding[] newMethods; System.arraycopy( binding.methods, 0, newMethods = new MethodBinding[binding.methods.length + 1], 1, binding.methods.length); newMethods[0] = cd.binding; binding.methods = newMethods; } //=================================================== return cd.binding; } /* * Find the matching parse node, answers null if nothing found */ public FieldDeclaration declarationOf(FieldBinding fieldBinding) { if (fieldBinding != null) { for (int i = 0, max = this.fields.length; i < max; i++) { FieldDeclaration fieldDecl; if ((fieldDecl = this.fields[i]).binding == fieldBinding) return fieldDecl; } } return null; } /* * Find the matching parse node, answers null if nothing found */ public TypeDeclaration declarationOf(MemberTypeBinding memberTypeBinding) { if (memberTypeBinding != null) { for (int i = 0, max = this.memberTypes.length; i < max; i++) { TypeDeclaration memberTypeDecl; if ((memberTypeDecl = this.memberTypes[i]).binding == memberTypeBinding) return memberTypeDecl; } } return null; } /* * Find the matching parse node, answers null if nothing found */ public AbstractMethodDeclaration declarationOf(MethodBinding methodBinding) { if (methodBinding != null) { for (int i = 0, max = this.methods.length; i < max; i++) { AbstractMethodDeclaration methodDecl; if ((methodDecl = this.methods[i]).binding == methodBinding) return methodDecl; } } return null; } /* * Finds the matching type amoung this type's member types. * Returns null if no type with this name is found. * The type name is a compound name relative to this type * eg. if this type is X and we're looking for Y.X.A.B * then a type name would be {X, A, B} */ public TypeDeclaration declarationOfType(char[][] typeName) { int typeNameLength = typeName.length; if (typeNameLength < 1 || !CharOperation.equals(typeName[0], this.name)) { return null; } if (typeNameLength == 1) { return this; } char[][] subTypeName = new char[typeNameLength - 1][]; System.arraycopy(typeName, 1, subTypeName, 0, typeNameLength - 1); for (int i = 0; i < this.memberTypes.length; i++) { TypeDeclaration typeDecl = this.memberTypes[i].declarationOfType(subTypeName); if (typeDecl != null) { return typeDecl; } } return null; } /** * Generic bytecode generation for type */ public void generateCode(ClassFile enclosingClassFile) { if (hasBeenGenerated) return; hasBeenGenerated = true; if (ignoreFurtherInvestigation) { if (binding == null) return; ClassFile.createProblemType( this, scope.referenceCompilationUnit().compilationResult); return; } try { // create the result for a compiled type ClassFile classFile = new ClassFile(binding, enclosingClassFile, false); // generate all fiels classFile.addFieldInfos(); // record the inner type inside its own .class file to be able // to generate inner classes attributes if (binding.isMemberType()) classFile.recordEnclosingTypeAttributes(binding); if (binding.isLocalType()) { enclosingClassFile.recordNestedLocalAttribute(binding); classFile.recordNestedLocalAttribute(binding); } if (memberTypes != null) { for (int i = 0, max = memberTypes.length; i < max; i++) { // record the inner type inside its own .class file to be able // to generate inner classes attributes classFile.recordNestedMemberAttribute(memberTypes[i].binding); memberTypes[i].generateCode(scope, classFile); } } // generate all methods classFile.setForMethodInfos(); if (methods != null) { for (int i = 0, max = methods.length; i < max; i++) { methods[i].generateCode(scope, classFile); } } // generate all synthetic and abstract methods classFile.addSpecialMethods(); if (ignoreFurtherInvestigation) { // trigger problem type generation for code gen errors throw new AbortType(scope.referenceCompilationUnit().compilationResult, null); } // finalize the compiled type result classFile.addAttributes(); scope.referenceCompilationUnit().compilationResult.record( binding.constantPoolName(), classFile); } catch (AbortType e) { if (binding == null) return; ClassFile.createProblemType( this, scope.referenceCompilationUnit().compilationResult); } } /** * Bytecode generation for a local inner type (API as a normal statement code gen) */ public void generateCode(BlockScope blockScope, CodeStream codeStream) { if ((this.bits & IsReachableMASK) == 0) { return; } if (hasBeenGenerated) return; int pc = codeStream.position; if (binding != null) ((NestedTypeBinding) binding).computeSyntheticArgumentSlotSizes(); generateCode(codeStream.classFile); codeStream.recordPositionsFrom(pc, this.sourceStart); } /** * Bytecode generation for a member inner type */ public void generateCode(ClassScope classScope, ClassFile enclosingClassFile) { if (hasBeenGenerated) return; if (binding != null) ((NestedTypeBinding) binding).computeSyntheticArgumentSlotSizes(); generateCode(enclosingClassFile); } /** * Bytecode generation for a package member */ public void generateCode(CompilationUnitScope unitScope) { generateCode((ClassFile) null); } public boolean hasErrors() { return this.ignoreFurtherInvestigation; } /** * Common flow analysis for all types * */ public void internalAnalyseCode(FlowContext flowContext, FlowInfo flowInfo) { if (this.binding.isPrivate() && !this.binding.isPrivateUsed()) { if (!scope.referenceCompilationUnit().compilationResult.hasSyntaxError()) { scope.problemReporter().unusedPrivateType(this); } } InitializationFlowContext initializerContext = new InitializationFlowContext(null, this, initializerScope); InitializationFlowContext staticInitializerContext = new InitializationFlowContext(null, this, staticInitializerScope); FlowInfo nonStaticFieldInfo = flowInfo.copy().unconditionalInits().discardFieldInitializations(); FlowInfo staticFieldInfo = flowInfo.copy().unconditionalInits().discardFieldInitializations(); if (fields != null) { for (int i = 0, count = fields.length; i < count; i++) { FieldDeclaration field = fields[i]; if (field.isStatic()) { /*if (field.isField()){ staticInitializerContext.handledExceptions = NoExceptions; // no exception is allowed jls8.3.2 } else {*/ staticInitializerContext.handledExceptions = AnyException; // tolerate them all, and record them /*}*/ staticFieldInfo = field.analyseCode( staticInitializerScope, staticInitializerContext, staticFieldInfo); // in case the initializer is not reachable, use a reinitialized flowInfo and enter a fake reachable // branch, since the previous initializer already got the blame. if (staticFieldInfo == FlowInfo.DEAD_END) { staticInitializerScope.problemReporter().initializerMustCompleteNormally(field); staticFieldInfo = FlowInfo.initial(maxFieldCount).setReachMode(FlowInfo.UNREACHABLE); } } else { /*if (field.isField()){ initializerContext.handledExceptions = NoExceptions; // no exception is allowed jls8.3.2 } else {*/ initializerContext.handledExceptions = AnyException; // tolerate them all, and record them /*}*/ nonStaticFieldInfo = field.analyseCode(initializerScope, initializerContext, nonStaticFieldInfo); // in case the initializer is not reachable, use a reinitialized flowInfo and enter a fake reachable // branch, since the previous initializer already got the blame. if (nonStaticFieldInfo == FlowInfo.DEAD_END) { initializerScope.problemReporter().initializerMustCompleteNormally(field); nonStaticFieldInfo = FlowInfo.initial(maxFieldCount).setReachMode(FlowInfo.UNREACHABLE); } } } } if (memberTypes != null) { for (int i = 0, count = memberTypes.length; i < count; i++) { if (flowContext != null){ // local type memberTypes[i].analyseCode(scope, flowContext, nonStaticFieldInfo.copy().setReachMode(flowInfo.reachMode())); // reset reach mode in case initializers did abrupt completely } else { memberTypes[i].analyseCode(scope); } } } if (methods != null) { UnconditionalFlowInfo outerInfo = flowInfo.copy().unconditionalInits().discardFieldInitializations(); FlowInfo constructorInfo = nonStaticFieldInfo.unconditionalInits().discardNonFieldInitializations().addInitializationsFrom(outerInfo); for (int i = 0, count = methods.length; i < count; i++) { AbstractMethodDeclaration method = methods[i]; if (method.ignoreFurtherInvestigation) continue; if (method.isInitializationMethod()) { if (method.isStatic()) { // <clinit> method.analyseCode( scope, staticInitializerContext, staticFieldInfo.unconditionalInits().discardNonFieldInitializations().addInitializationsFrom(outerInfo).setReachMode(flowInfo.reachMode())); // reset reach mode in case initializers did abrupt completely } else { // constructor method.analyseCode(scope, initializerContext, constructorInfo.copy().setReachMode(flowInfo.reachMode())); // reset reach mode in case initializers did abrupt completely } } else { // regular method method.analyseCode(scope, null, flowInfo.copy()); } } } } public boolean isInterface() { return (modifiers & AccInterface) != 0; } /* * Access emulation for a local type * force to emulation of access to direct enclosing instance. * By using the initializer scope, we actually only request an argument emulation, the * field is not added until actually used. However we will force allocations to be qualified * with an enclosing instance. * 15.9.2 */ public void manageEnclosingInstanceAccessIfNecessary(BlockScope currentScope, FlowInfo flowInfo) { if (!flowInfo.isReachable()) return; NestedTypeBinding nestedType = (NestedTypeBinding) binding; MethodScope methodScope = currentScope.methodScope(); if (!methodScope.isStatic && !methodScope.isConstructorCall){ nestedType.addSyntheticArgumentAndField(binding.enclosingType()); } // add superclass enclosing instance arg for anonymous types (if necessary) if (binding.isAnonymousType()) { ReferenceBinding superclassBinding = binding.superclass; if (superclassBinding.enclosingType() != null && !superclassBinding.isStatic()) { if (!superclassBinding.isLocalType() || ((NestedTypeBinding)superclassBinding).getSyntheticField(superclassBinding.enclosingType(), true) != null){ nestedType.addSyntheticArgument(superclassBinding.enclosingType()); } } } } /* * Access emulation for a local member type * force to emulation of access to direct enclosing instance. * By using the initializer scope, we actually only request an argument emulation, the * field is not added until actually used. However we will force allocations to be qualified * with an enclosing instance. * * Local member cannot be static. */ public void manageEnclosingInstanceAccessIfNecessary(ClassScope currentScope, FlowInfo flowInfo) { if (!flowInfo.isReachable()) return; NestedTypeBinding nestedType = (NestedTypeBinding) binding; nestedType.addSyntheticArgumentAndField(binding.enclosingType()); } /** * A <clinit> will be requested as soon as static fields or assertions are present. It will be eliminated during * classfile creation if no bytecode was actually produced based on some optimizations/compiler settings. */ public final boolean needClassInitMethod() { // always need a <clinit> when assertions are present if ((this.bits & AddAssertionMASK) != 0) return true; if (fields == null) return false; if (isInterface()) return true; // fields are implicitly statics for (int i = fields.length; --i >= 0;) { FieldDeclaration field = fields[i]; //need to test the modifier directly while there is no binding yet if ((field.modifiers & AccStatic) != 0) return true; } return false; } public void parseMethod(Parser parser, CompilationUnitDeclaration unit) { //connect method bodies if (unit.ignoreMethodBodies) return; //members if (memberTypes != null) { int length = memberTypes.length; for (int i = 0; i < length; i++) memberTypes[i].parseMethod(parser, unit); } //methods if (methods != null) { int length = methods.length; for (int i = 0; i < length; i++) methods[i].parseStatements(parser, unit); } //initializers if (fields != null) { int length = fields.length; for (int i = 0; i < length; i++) { if (fields[i] instanceof Initializer) { ((Initializer) fields[i]).parseStatements(parser, this, unit); } } } } public StringBuffer print(int indent, StringBuffer output) { if ((this.bits & IsAnonymousTypeMASK) == 0) { printIndent(indent, output); printHeader(0, output); } return printBody(indent, output); } public StringBuffer printBody(int indent, StringBuffer output) { output.append(" {"); //$NON-NLS-1$ if (memberTypes != null) { for (int i = 0; i < memberTypes.length; i++) { if (memberTypes[i] != null) { output.append('\n'); memberTypes[i].print(indent + 1, output); } } } if (fields != null) { for (int fieldI = 0; fieldI < fields.length; fieldI++) { if (fields[fieldI] != null) { output.append('\n'); fields[fieldI].print(indent + 1, output); } } } if (methods != null) { for (int i = 0; i < methods.length; i++) { if (methods[i] != null) { output.append('\n'); methods[i].print(indent + 1, output); } } } output.append('\n'); return printIndent(indent, output).append('}'); } public StringBuffer printHeader(int indent, StringBuffer output) { printModifiers(this.modifiers, output); output.append(isInterface() ? "interface " : "class "); //$NON-NLS-1$ //$NON-NLS-2$ output.append(name); if (typeParameters != null) { output.append("<");//$NON-NLS-1$ for (int i = 0; i < typeParameters.length; i++) { if (i > 0) output.append( ", "); //$NON-NLS-1$ typeParameters[i].print(0, output); } output.append(">");//$NON-NLS-1$ } if (superclass != null) { output.append(" extends "); //$NON-NLS-1$ superclass.print(0, output); } if (superInterfaces != null && superInterfaces.length > 0) { output.append(isInterface() ? " extends " : " implements ");//$NON-NLS-2$ //$NON-NLS-1$ for (int i = 0; i < superInterfaces.length; i++) { if (i > 0) output.append( ", "); //$NON-NLS-1$ superInterfaces[i].print(0, output); } } return output; } public StringBuffer printStatement(int tab, StringBuffer output) { return print(tab, output); } public void resolve() { SourceTypeBinding sourceType = this.binding; if (sourceType == null) { this.ignoreFurtherInvestigation = true; return; } try { if ((this.bits & UndocumentedEmptyBlockMASK) != 0) { this.scope.problemReporter().undocumentedEmptyBlock(this.bodyStart-1, this.bodyEnd); } boolean needSerialVersion = this.scope.environment().options.getSeverity(CompilerOptions.MissingSerialVersion) != ProblemSeverities.Ignore && sourceType.isClass() && !sourceType.isAbstract() && sourceType.findSuperTypeErasingTo(T_JavaIoSerializable, false /*Serializable is not a class*/) != null; if (this.typeParameters != null && scope.getJavaLangThrowable().isSuperclassOf(sourceType)) { this.scope.problemReporter().genericTypeCannotExtendThrowable(this); } this.maxFieldCount = 0; int lastVisibleFieldID = -1; if (this.fields != null) { for (int i = 0, count = this.fields.length; i < count; i++) { FieldDeclaration field = this.fields[i]; if (field.isField()) { FieldBinding fieldBinding = field.binding; if (fieldBinding == null) { // still discover secondary errors if (field.initialization != null) field.initialization.resolve(field.isStatic() ? this.staticInitializerScope : this.initializerScope); this.ignoreFurtherInvestigation = true; continue; } if (needSerialVersion && ((fieldBinding.modifiers & (AccStatic | AccFinal)) == (AccStatic | AccFinal)) && CharOperation.equals(TypeConstants.SERIALVERSIONUID, fieldBinding.name) && BaseTypes.LongBinding == fieldBinding.type) { needSerialVersion = false; } this.maxFieldCount++; lastVisibleFieldID = field.binding.id; } else { // initializer ((Initializer) field).lastVisibleFieldID = lastVisibleFieldID + 1; } field.resolve(field.isStatic() ? this.staticInitializerScope : this.initializerScope); } } if (needSerialVersion) { this.scope.problemReporter().missingSerialVersion(this); } if (this.memberTypes != null) { for (int i = 0, count = this.memberTypes.length; i < count; i++) { this.memberTypes[i].resolve(this.scope); } } int missingAbstractMethodslength = this.missingAbstractMethods == null ? 0 : this.missingAbstractMethods.length; int methodsLength = this.methods == null ? 0 : this.methods.length; if ((methodsLength + missingAbstractMethodslength) > 0xFFFF) { this.scope.problemReporter().tooManyMethods(this); } if (this.methods != null) { for (int i = 0, count = this.methods.length; i < count; i++) { this.methods[i].resolve(this.scope); } } // Resolve javadoc if (this.javadoc != null) { if (this.scope != null) { this.javadoc.resolve(this.scope); } } else if (sourceType != null && !sourceType.isLocalType()) { this.scope.problemReporter().javadocMissing(this.sourceStart, this.sourceEnd, sourceType.modifiers); } } catch (AbortType e) { this.ignoreFurtherInvestigation = true; return; } } public void resolve(BlockScope blockScope) { // local type declaration // need to build its scope first and proceed with binding's creation if ((this.bits & IsAnonymousTypeMASK) == 0) blockScope.addLocalType(this); if (binding != null) { // remember local types binding for innerclass emulation propagation blockScope.referenceCompilationUnit().record((LocalTypeBinding)binding); // binding is not set if the receiver could not be created resolve(); updateMaxFieldCount(); } } public void resolve(ClassScope upperScope) { // member scopes are already created // request the construction of a binding if local member type if (binding != null && binding instanceof LocalTypeBinding) { // remember local types binding for innerclass emulation propagation upperScope.referenceCompilationUnit().record((LocalTypeBinding)binding); } resolve(); updateMaxFieldCount(); } public void resolve(CompilationUnitScope upperScope) { // top level : scope are already created resolve(); updateMaxFieldCount(); } public void tagAsHavingErrors() { ignoreFurtherInvestigation = true; } /** * Iteration for a package member type * */ public void traverse( ASTVisitor visitor, CompilationUnitScope unitScope) { if (ignoreFurtherInvestigation) return; try { if (visitor.visit(this, unitScope)) { if (this.annotations != null) { int annotationsLength = this.annotations.length; for (int i = 0; i < annotationsLength; i++) this.annotations[i].traverse(visitor, scope); } if (this.superclass != null) this.superclass.traverse(visitor, scope); if (this.superInterfaces != null) { int length = this.superInterfaces.length; for (int i = 0; i < length; i++) this.superInterfaces[i].traverse(visitor, scope); } if (this.typeParameters != null) { int length = this.typeParameters.length; for (int i = 0; i < length; i++) { this.typeParameters[i].traverse(visitor, scope); } } if (this.memberTypes != null) { int length = this.memberTypes.length; for (int i = 0; i < length; i++) this.memberTypes[i].traverse(visitor, scope); } if (this.enums != null) { int length = this.enums.length; for (int i = 0; i < length; i++) this.enums[i].traverse(visitor, scope); } if (this.fields != null) { int length = this.fields.length; for (int i = 0; i < length; i++) { FieldDeclaration field; if ((field = this.fields[i]).isStatic()) { field.traverse(visitor, staticInitializerScope); } else { field.traverse(visitor, initializerScope); } } } if (this.methods != null) { int length = this.methods.length; for (int i = 0; i < length; i++) this.methods[i].traverse(visitor, scope); } } visitor.endVisit(this, unitScope); } catch (AbortType e) { // silent abort } } /** * Iteration for a local innertype * */ public void traverse(ASTVisitor visitor, BlockScope blockScope) { if (ignoreFurtherInvestigation) return; try { if (visitor.visit(this, blockScope)) { if (this.annotations != null) { int annotationsLength = this.annotations.length; for (int i = 0; i < annotationsLength; i++) this.annotations[i].traverse(visitor, scope); } if (this.superclass != null) this.superclass.traverse(visitor, scope); if (this.superInterfaces != null) { int length = this.superInterfaces.length; for (int i = 0; i < length; i++) this.superInterfaces[i].traverse(visitor, scope); } if (this.typeParameters != null) { int length = this.typeParameters.length; for (int i = 0; i < length; i++) { this.typeParameters[i].traverse(visitor, scope); } } if (this.memberTypes != null) { int length = this.memberTypes.length; for (int i = 0; i < length; i++) this.memberTypes[i].traverse(visitor, scope); } if (this.enums != null) { int length = this.enums.length; for (int i = 0; i < length; i++) this.enums[i].traverse(visitor, scope); } if (this.fields != null) { int length = this.fields.length; for (int i = 0; i < length; i++) { FieldDeclaration field; if ((field = this.fields[i]).isStatic()) { // local type cannot have static fields } else { field.traverse(visitor, initializerScope); } } } if (this.methods != null) { int length = this.methods.length; for (int i = 0; i < length; i++) this.methods[i].traverse(visitor, scope); } } visitor.endVisit(this, blockScope); } catch (AbortType e) { // silent abort } } /** * Iteration for a member innertype * */ public void traverse(ASTVisitor visitor, ClassScope classScope) { if (ignoreFurtherInvestigation) return; try { if (visitor.visit(this, classScope)) { if (this.annotations != null) { int annotationsLength = this.annotations.length; for (int i = 0; i < annotationsLength; i++) this.annotations[i].traverse(visitor, scope); } if (this.superclass != null) this.superclass.traverse(visitor, scope); if (this.superInterfaces != null) { int length = this.superInterfaces.length; for (int i = 0; i < length; i++) this.superInterfaces[i].traverse(visitor, scope); } if (this.typeParameters != null) { int length = this.typeParameters.length; for (int i = 0; i < length; i++) { this.typeParameters[i].traverse(visitor, scope); } } if (this.memberTypes != null) { int length = this.memberTypes.length; for (int i = 0; i < length; i++) this.memberTypes[i].traverse(visitor, scope); } if (this.enums != null) { int length = this.enums.length; for (int i = 0; i < length; i++) this.enums[i].traverse(visitor, scope); } if (this.fields != null) { int length = this.fields.length; for (int i = 0; i < length; i++) { FieldDeclaration field; if ((field = this.fields[i]).isStatic()) { field.traverse(visitor, staticInitializerScope); } else { field.traverse(visitor, initializerScope); } } } if (this.methods != null) { int length = this.methods.length; for (int i = 0; i < length; i++) this.methods[i].traverse(visitor, scope); } } visitor.endVisit(this, classScope); } catch (AbortType e) { // silent abort } } /** * MaxFieldCount's computation is necessary so as to reserve space for * the flow info field portions. It corresponds to the maximum amount of * fields this class or one of its innertypes have. * * During name resolution, types are traversed, and the max field count is recorded * on the outermost type. It is then propagated down during the flow analysis. * * This method is doing either up/down propagation. */ void updateMaxFieldCount() { if (binding == null) return; // error scenario TypeDeclaration outerMostType = scope.outerMostClassScope().referenceType(); if (maxFieldCount > outerMostType.maxFieldCount) { outerMostType.maxFieldCount = maxFieldCount; // up } else { maxFieldCount = outerMostType.maxFieldCount; // down } } }