/* * Copyright (c) 2003, 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.crypto.provider; import java.security.*; import java.security.spec.AlgorithmParameterSpec; import javax.crypto.*; /** * Implementation of the ARCFOUR cipher, an algorithm apparently compatible * with RSA Security's RC4(tm) cipher. The description of this algorithm was * taken from Bruce Schneier's book Applied Cryptography, 2nd ed., * section 17.1. * * We support keys from 40 to 1024 bits. ARCFOUR would allow for keys shorter * than 40 bits, but that is too insecure for us to permit. * * Note that we subclass CipherSpi directly and do not use the CipherCore * framework. That was designed to simplify implementation of block ciphers * and does not offer any advantages for stream ciphers such as ARCFOUR. * * @since 1.5 * @author Andreas Sterbenz */ public final class ARCFOURCipher extends CipherSpi { // state array S, 256 entries. The entries are 8-bit, but we use an int[] // because int arithmetic is much faster than in Java than bytes. private final int[] S; // state indices i and j. Called is and js to avoid collision with // local variables. 'is' is set to -1 after a call to doFinal() private int is, js; // the bytes of the last key used (if any) // we need this to re-initialize after a call to doFinal() private byte[] lastKey; // called by the JCE framework public ARCFOURCipher() { SunJCE.ensureIntegrity(getClass()); S = new int[256]; } // core key setup code. initializes S, is, and js // assumes key is non-null and between 40 and 1024 bit private void init(byte[] key) { // initialize S[i] to i for (int i = 0; i < 256; i++) { S[i] = i; } // we avoid expanding key to 256 bytes and instead keep a separate // counter ki = i mod key.length. for (int i = 0, j = 0, ki = 0; i < 256; i++) { int Si = S[i]; j = (j + Si + key[ki]) & 0xff; S[i] = S[j]; S[j] = Si; ki++; if (ki == key.length) { ki = 0; } } // set indices to 0 is = 0; js = 0; } // core crypt code. OFB style, so works for both encryption and decryption private void crypt(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) { if (is < 0) { // doFinal() was called, need to reset the cipher to initial state init(lastKey); } while (inLen-- > 0) { is = (is + 1) & 0xff; int Si = S[is]; js = (js + Si) & 0xff; int Sj = S[js]; S[is] = Sj; S[js] = Si; out[outOfs++] = (byte)(in[inOfs++] ^ S[(Si + Sj) & 0xff]); } } // Modes do not make sense with stream ciphers, but allow ECB // see JCE spec. protected void engineSetMode(String mode) throws NoSuchAlgorithmException { if (mode.equalsIgnoreCase("ECB") == false) { throw new NoSuchAlgorithmException("Unsupported mode " + mode); } } // Padding does not make sense with stream ciphers, but allow NoPadding // see JCE spec. protected void engineSetPadding(String padding) throws NoSuchPaddingException { if (padding.equalsIgnoreCase("NoPadding") == false) { throw new NoSuchPaddingException("Padding must be NoPadding"); } } // Return 0 to indicate stream cipher // see JCE spec. protected int engineGetBlockSize() { return 0; } // output length is always the same as input length // see JCE spec protected int engineGetOutputSize(int inputLen) { return inputLen; } // no IV, return null // see JCE spec protected byte[] engineGetIV() { return null; } // no parameters // see JCE spec protected AlgorithmParameters engineGetParameters() { return null; } // see JCE spec protected void engineInit(int opmode, Key key, SecureRandom random) throws InvalidKeyException { init(opmode, key); } // see JCE spec protected void engineInit(int opmode, Key key, AlgorithmParameterSpec params, SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException { if (params != null) { throw new InvalidAlgorithmParameterException ("Parameters not supported"); } init(opmode, key); } // see JCE spec protected void engineInit(int opmode, Key key, AlgorithmParameters params, SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException { if (params != null) { throw new InvalidAlgorithmParameterException ("Parameters not supported"); } init(opmode, key); } // init method. Check opmode and key, then call init(byte[]). private void init(int opmode, Key key) throws InvalidKeyException { if ((opmode < Cipher.ENCRYPT_MODE) || (opmode > Cipher.UNWRAP_MODE)) { throw new InvalidKeyException("Unknown opmode: " + opmode); } lastKey = getEncodedKey(key); init(lastKey); } // return the encoding of key if key is a valid ARCFOUR key. // otherwise, throw an InvalidKeyException private static byte[] getEncodedKey(Key key) throws InvalidKeyException { String keyAlg = key.getAlgorithm(); if (!keyAlg.equals("RC4") && !keyAlg.equals("ARCFOUR")) { throw new InvalidKeyException("Not an ARCFOUR key: " + keyAlg); } if ("RAW".equals(key.getFormat()) == false) { throw new InvalidKeyException("Key encoding format must be RAW"); } byte[] encodedKey = key.getEncoded(); if ((encodedKey.length < 5) || (encodedKey.length > 128)) { throw new InvalidKeyException ("Key length must be between 40 and 1024 bit"); } return encodedKey; } // see JCE spec protected byte[] engineUpdate(byte[] in, int inOfs, int inLen) { byte[] out = new byte[inLen]; crypt(in, inOfs, inLen, out, 0); return out; } // see JCE spec protected int engineUpdate(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) throws ShortBufferException { if (out.length - outOfs < inLen) { throw new ShortBufferException("Output buffer too small"); } crypt(in, inOfs, inLen, out, outOfs); return inLen; } // see JCE spec protected byte[] engineDoFinal(byte[] in, int inOfs, int inLen) { byte[] out = engineUpdate(in, inOfs, inLen); is = -1; return out; } // see JCE spec protected int engineDoFinal(byte[] in, int inOfs, int inLen, byte[] out, int outOfs) throws ShortBufferException { int outLen = engineUpdate(in, inOfs, inLen, out, outOfs); is = -1; return outLen; } // see JCE spec protected byte[] engineWrap(Key key) throws IllegalBlockSizeException, InvalidKeyException { byte[] encoded = key.getEncoded(); if ((encoded == null) || (encoded.length == 0)) { throw new InvalidKeyException("Could not obtain encoded key"); } return engineDoFinal(encoded, 0, encoded.length); } // see JCE spec protected Key engineUnwrap(byte[] wrappedKey, String algorithm, int type) throws InvalidKeyException, NoSuchAlgorithmException { byte[] encoded = engineDoFinal(wrappedKey, 0, wrappedKey.length); return ConstructKeys.constructKey(encoded, algorithm, type); } // see JCE spec protected int engineGetKeySize(Key key) throws InvalidKeyException { byte[] encodedKey = getEncodedKey(key); return encodedKey.length << 3; } }