package client.net.sf.saxon.ce.expr; import client.net.sf.saxon.ce.expr.instruct.DocumentInstr; import client.net.sf.saxon.ce.expr.instruct.GlobalVariable; import client.net.sf.saxon.ce.expr.instruct.TailCall; import client.net.sf.saxon.ce.expr.instruct.TailCallReturner; import client.net.sf.saxon.ce.om.Item; import client.net.sf.saxon.ce.om.SequenceIterator; import client.net.sf.saxon.ce.om.StructuredQName; import client.net.sf.saxon.ce.om.ValueRepresentation; import client.net.sf.saxon.ce.trans.XPathException; import client.net.sf.saxon.ce.type.ItemType; import client.net.sf.saxon.ce.type.TypeHierarchy; import client.net.sf.saxon.ce.value.SequenceType; import java.util.ArrayList; import java.util.List; /** * A LetExpression is modelled on the XQuery syntax let $x := expr return expr. This syntax * is not available in the surface XPath language, but it is used internally in an optimized * expression tree. */ public class LetExpression extends Assignation implements TailCallReturner { // This integer holds an approximation to the number of times that the declared variable is referenced. // The value 1 means there is only one reference and it is not in a loop, which means that the value will // not be retained in memory. If there are multiple references or references within a loop, the value will // be a small integer > 1. The special value FILTERED indicates that there is a reference within a loop // in the form $x[predicate], which indicates that the value should potentially be indexable. The initial // value 2 is for safety; if a LetExpression is optimized without first being typechecked (which happens // in the case of optimizer-created variables) then this ensures that no damaging rewrites are done. int evaluationMode = ExpressionTool.UNDECIDED; /** * Create a LetExpression */ public LetExpression() { //System.err.println("let"); } /** * Set the evaluation mode */ public void setEvaluationMode(int mode) { evaluationMode = mode; } /** * Type-check the expression. This also has the side-effect of counting the number of references * to the variable (treating references that occur within a loop specially) */ public Expression typeCheck(ExpressionVisitor visitor, ItemType contextItemType) throws XPathException { // The order of events is critical here. First we ensure that the type of the // sequence expression is established. This is used to establish the type of the variable, // which in turn is required when type-checking the action part. sequence = visitor.typeCheck(sequence, contextItemType); RoleLocator role = new RoleLocator(RoleLocator.VARIABLE, getVariableQName(), 0); //role.setSourceLocator(this); sequence = TypeChecker.strictTypeCheck( sequence, requiredType, role, visitor.getStaticContext()); final TypeHierarchy th = visitor.getConfiguration().getTypeHierarchy(); final ItemType actualItemType = sequence.getItemType(th); refineTypeInformation(actualItemType, sequence.getCardinality(), (sequence instanceof Literal ? ((Literal) sequence).getValue() : null), sequence.getSpecialProperties(), visitor, this); refCount = 0; action = visitor.typeCheck(action, contextItemType); return this; } /** * Determine whether this expression implements its own method for static type checking * * @return true - this expression has a non-trivial implementation of the staticTypeCheck() * method */ public boolean implementsStaticTypeCheck() { return true; } /** * Static type checking for let expressions is delegated to the expression itself, * and is performed on the "action" expression, to allow further delegation to the branches * of a conditional * @param req the required type * @param backwardsCompatible true if backwards compatibility mode applies * @param role the role of the expression in relation to the required type * @param visitor an expression visitor * @return the expression after type checking (perhaps augmented with dynamic type checking code) * @throws XPathException if failures occur, for example if the static type of one branch of the conditional * is incompatible with the required type */ public Expression staticTypeCheck(SequenceType req, boolean backwardsCompatible, RoleLocator role, ExpressionVisitor visitor) throws XPathException { action = TypeChecker.staticTypeCheck(action, req, backwardsCompatible, role, visitor); return this; } /** * Perform optimisation of an expression and its subexpressions. * <p/> * <p>This method is called after all references to functions and variables have been resolved * to the declaration of the function or variable, and after all type checking has been done.</p> * * @param visitor an expression visitor * @param contextItemType the static type of "." at the point where this expression is invoked. * The parameter is set to null if it is known statically that the context item will be undefined. * If the type of the context item is not known statically, the argument is set to * {@link client.net.sf.saxon.ce.type.Type#ITEM_TYPE} * @return the original expression, rewritten if appropriate to optimize execution * @throws XPathException if an error is discovered during this phase * (typically a type error) */ public Expression optimize(ExpressionVisitor visitor, ItemType contextItemType) throws XPathException { StaticContext env = visitor.getStaticContext(); Optimizer opt = visitor.getConfiguration().getOptimizer(); // if this is a construct of the form "let $j := EXP return $j" replace it with EXP // Remarkably, people do write this, and it can also be produced by previous rewrites // Note that type checks will already have been added to the sequence expression if (action instanceof VariableReference && ((VariableReference) action).getBinding() == this) { Expression e2 = visitor.optimize(sequence, contextItemType); return e2; } /** * Unless this has already been done, find and count the references to this variable */ // if this is an XSLT construct of the form <xsl:variable>text</xsl:variable>, try to replace // it by <xsl:variable select=""/>. This can be done if all the references to the variable use // its value as a string (rather than, say, as a node or as a boolean) if (sequence instanceof DocumentInstr && ((DocumentInstr) sequence).isTextOnly()) { if (allReferencesAreFlattened()) { sequence = ((DocumentInstr) sequence).getStringValueExpression(env); requiredType = SequenceType.SINGLE_UNTYPED_ATOMIC; adoptChildExpression(sequence); } } // refCount is initialized during the typeCheck() phase if (refCount == 0) { // variable is not used - no need to evaluate it Expression a = visitor.optimize(action, contextItemType); ExpressionTool.copyLocationInfo(this, a); return a; } int tries = 0; while (tries++ < 5) { Expression seq2 = visitor.optimize(sequence, contextItemType); if (seq2 == sequence) { break; } sequence = seq2; adoptChildExpression(sequence); visitor.resetStaticProperties(); } tries = 0; while (tries++ < 5) { Expression act2 = visitor.optimize(action, contextItemType); if (act2 == action) { break; } action = act2; adoptChildExpression(action); visitor.resetStaticProperties(); } evaluationMode = ExpressionTool.lazyEvaluationMode(sequence); return this; } /** * Determine whether all references to this variable are using the value either * (a) by atomizing it, or (b) by taking its string value. (This excludes usages * such as testing the existence of a node or taking the effective boolean value). * @return true if all references are known to atomize (or stringify) the value, * false otherwise. The value false may indicate "not known". */ private boolean allReferencesAreFlattened() { List references = new ArrayList(); ExpressionTool.gatherVariableReferences(action, this, references); for (int i=references.size()-1; i>=0; i--) { VariableReference bref = (VariableReference)references.get(i); if (bref.isFlattened()) { // OK, it's a string context } else { return false; } } return true; } /** * Iterate over the result of the expression to return a sequence of items */ public SequenceIterator iterate(XPathContext context) throws XPathException { // minimize stack consumption by evaluating nested LET expressions iteratively LetExpression let = this; while (true) { ValueRepresentation val = let.eval(context); context.setLocalVariable(let.getLocalSlotNumber(), val); if (let.action instanceof LetExpression) { let = (LetExpression) let.action; } else { break; } } return let.action.iterate(context); } /** * Evaluate the variable. * @param context the dynamic evaluation context * @return the result of evaluating the expression that is bound to the variable */ protected ValueRepresentation eval(XPathContext context) throws XPathException { if (evaluationMode == ExpressionTool.UNDECIDED) { evaluationMode = ExpressionTool.lazyEvaluationMode(sequence); } return ExpressionTool.evaluate(sequence, evaluationMode, context, 10); } /** * Evaluate the expression as a singleton */ public Item evaluateItem(XPathContext context) throws XPathException { // minimize stack consumption by evaluating nested LET expressions iteratively LetExpression let = this; while (true) { ValueRepresentation val = let.eval(context); context.setLocalVariable(let.getLocalSlotNumber(), val); if (let.action instanceof LetExpression) { let = (LetExpression) let.action; } else { break; } } return let.action.evaluateItem(context); } /** * Process this expression as an instruction, writing results to the current * outputter */ public void process(XPathContext context) throws XPathException { // minimize stack consumption by evaluating nested LET expressions iteratively LetExpression let = this; while (true) { ValueRepresentation val = let.eval(context); context.setLocalVariable(let.getLocalSlotNumber(), val); if (let.action instanceof LetExpression) { let = (LetExpression) let.action; } else { break; } } let.action.process(context); } /** * Determine the data type of the items returned by the expression, if possible * * @param th the type hierarchy cache * @return one of the values Type.STRING, Type.BOOLEAN, Type.NUMBER, Type.NODE, * or Type.ITEM (meaning not known in advance) */ public ItemType getItemType(TypeHierarchy th) { return action.getItemType(th); } /** * Determine the static cardinality of the expression */ public int computeCardinality() { return action.getCardinality(); } /** * Get the static properties of this expression (other than its type). The result is * bit-signficant. These properties are used for optimizations. In general, if * property bit is set, it is true, but if it is unset, the value is unknown. */ public int computeSpecialProperties() { int props = action.getSpecialProperties(); int seqProps = sequence.getSpecialProperties(); if ((seqProps & StaticProperty.NON_CREATIVE) == 0) { props &= ~StaticProperty.NON_CREATIVE; } return props; } /** * Mark tail function calls */ public int markTailFunctionCalls(StructuredQName qName, int arity) { return ExpressionTool.markTailFunctionCalls(action, qName, arity); } /** * Promote this expression if possible */ public Expression promote(PromotionOffer offer, Expression parent) throws XPathException { Expression exp = offer.accept(parent, this); if (exp != null) { return exp; } else { // pass the offer on to the sequence expression Expression seq2 = doPromotion(sequence, offer); if (seq2 != sequence) { // if we've extracted a global variable, it may need to be marked indexable if (seq2 instanceof VariableReference) { Binding b = ((VariableReference)seq2).getBinding(); if (b instanceof GlobalVariable) { ((GlobalVariable)b).setReferenceCount(refCount < 10 ? 10 : refCount); } } sequence = seq2; } if (offer.action == PromotionOffer.UNORDERED || offer.action == PromotionOffer.REPLACE_CURRENT) { action = doPromotion(action, offer); } else if (offer.action == PromotionOffer.RANGE_INDEPENDENT || offer.action == PromotionOffer.FOCUS_INDEPENDENT) { // Pass the offer to the action expression after adding the variable bound by this let expression, // so that a subexpression must depend on neither variable if it is to be promoted Binding[] savedBindingList = offer.bindingList; offer.bindingList = extendBindingList(offer.bindingList); action = doPromotion(action, offer); offer.bindingList = savedBindingList; } return this; } } /** * ProcessLeavingTail: called to do the real work of this instruction. * The results of the instruction are written * to the current Receiver, which can be obtained via the Controller. * * @param context The dynamic context of the transformation, giving access to the current node, * the current variables, etc. * @return null if the instruction has completed execution; or a TailCall indicating * a function call or template call that is delegated to the caller, to be made after the stack has * been unwound so as to save stack space. */ public TailCall processLeavingTail(XPathContext context) throws XPathException { // minimize stack consumption by evaluating nested LET expressions iteratively LetExpression let = this; while (true) { ValueRepresentation val = let.eval(context); context.setLocalVariable(let.getLocalSlotNumber(), val); if (let.action instanceof LetExpression) { let = (LetExpression) let.action; } else { break; } } if (let.action instanceof TailCallReturner) { return ((TailCallReturner) let.action).processLeavingTail(context); } else { let.action.process(context); return null; } } /** * The toString() method for an expression attempts to give a representation of the expression * in an XPath-like form, but there is no guarantee that the syntax will actually be true XPath. * In the case of XSLT instructions, the toString() method gives an abstracted view of the syntax * @return a representation of the expression as a string */ public String toString() { return "let $" + getVariableName() + " := " + sequence.toString() + " return " + action.toString(); } } // This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. // If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // This Source Code Form is “Incompatible With Secondary Licenses”, as defined by the Mozilla Public License, v. 2.0.