package org.apache.lucene.search; /** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.Term; /** Subclass of FilteredTermEnum for enumerating all terms that are similar * to the specified filter term. * * <p>Term enumerations are always ordered by Term.compareTo(). Each term in * the enumeration is greater than all that precede it. */ public final class FuzzyTermEnum extends FilteredTermEnum { /* Allows us save time required to create a new array * every time similarity is called. */ private int[] p; private int[] d; private float similarity; private boolean endEnum = false; private Term searchTerm = null; private final String field; private final String text; private final String prefix; private final float minimumSimilarity; private final float scale_factor; /** * Creates a FuzzyTermEnum with an empty prefix and a minSimilarity of 0.5f. * <p> * After calling the constructor the enumeration is already pointing to the first * valid term if such a term exists. * * @param reader * @param term * @throws IOException * @see #FuzzyTermEnum(IndexReader, Term, float, int) */ public FuzzyTermEnum(IndexReader reader, Term term) throws IOException { this(reader, term, FuzzyQuery.defaultMinSimilarity, FuzzyQuery.defaultPrefixLength); } /** * Creates a FuzzyTermEnum with an empty prefix. * <p> * After calling the constructor the enumeration is already pointing to the first * valid term if such a term exists. * * @param reader * @param term * @param minSimilarity * @throws IOException * @see #FuzzyTermEnum(IndexReader, Term, float, int) */ public FuzzyTermEnum(IndexReader reader, Term term, float minSimilarity) throws IOException { this(reader, term, minSimilarity, FuzzyQuery.defaultPrefixLength); } /** * Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of * length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity > * <code>minSimilarity</code>. * <p> * After calling the constructor the enumeration is already pointing to the first * valid term if such a term exists. * * @param reader Delivers terms. * @param term Pattern term. * @param minSimilarity Minimum required similarity for terms from the reader. Default value is 0.5f. * @param prefixLength Length of required common prefix. Default value is 0. * @throws IOException */ public FuzzyTermEnum(IndexReader reader, Term term, final float minSimilarity, final int prefixLength) throws IOException { super(); if (minSimilarity >= 1.0f) throw new IllegalArgumentException("minimumSimilarity cannot be greater than or equal to 1"); else if (minSimilarity < 0.0f) throw new IllegalArgumentException("minimumSimilarity cannot be less than 0"); if(prefixLength < 0) throw new IllegalArgumentException("prefixLength cannot be less than 0"); this.minimumSimilarity = minSimilarity; this.scale_factor = 1.0f / (1.0f - minimumSimilarity); this.searchTerm = term; this.field = searchTerm.field(); //The prefix could be longer than the word. //It's kind of silly though. It means we must match the entire word. final int fullSearchTermLength = searchTerm.text().length(); final int realPrefixLength = prefixLength > fullSearchTermLength ? fullSearchTermLength : prefixLength; this.text = searchTerm.text().substring(realPrefixLength); this.prefix = searchTerm.text().substring(0, realPrefixLength); this.p = new int[this.text.length()+1]; this.d = new int[this.text.length()+1]; setEnum(reader.terms(new Term(searchTerm.field(), prefix))); } /** * The termCompare method in FuzzyTermEnum uses Levenshtein distance to * calculate the distance between the given term and the comparing term. */ @Override protected final boolean termCompare(Term term) { if (field == term.field() && term.text().startsWith(prefix)) { final String target = term.text().substring(prefix.length()); this.similarity = similarity(target); return (similarity > minimumSimilarity); } endEnum = true; return false; } /** {@inheritDoc} */ @Override public final float difference() { return (similarity - minimumSimilarity) * scale_factor; } /** {@inheritDoc} */ @Override public final boolean endEnum() { return endEnum; } /****************************** * Compute Levenshtein distance ******************************/ /** * <p>Similarity returns a number that is 1.0f or less (including negative numbers) * based on how similar the Term is compared to a target term. It returns * exactly 0.0f when * <pre> * editDistance > maximumEditDistance</pre> * Otherwise it returns: * <pre> * 1 - (editDistance / length)</pre> * where length is the length of the shortest term (text or target) including a * prefix that are identical and editDistance is the Levenshtein distance for * the two words.</p> * * <p>Embedded within this algorithm is a fail-fast Levenshtein distance * algorithm. The fail-fast algorithm differs from the standard Levenshtein * distance algorithm in that it is aborted if it is discovered that the * minimum distance between the words is greater than some threshold. * * <p>To calculate the maximum distance threshold we use the following formula: * <pre> * (1 - minimumSimilarity) * length</pre> * where length is the shortest term including any prefix that is not part of the * similarity comparison. This formula was derived by solving for what maximum value * of distance returns false for the following statements: * <pre> * similarity = 1 - ((float)distance / (float) (prefixLength + Math.min(textlen, targetlen))); * return (similarity > minimumSimilarity);</pre> * where distance is the Levenshtein distance for the two words. * </p> * <p>Levenshtein distance (also known as edit distance) is a measure of similarity * between two strings where the distance is measured as the number of character * deletions, insertions or substitutions required to transform one string to * the other string. * @param target the target word or phrase * @return the similarity, 0.0 or less indicates that it matches less than the required * threshold and 1.0 indicates that the text and target are identical */ private float similarity(final String target) { final int m = target.length(); final int n = text.length(); if (n == 0) { //we don't have anything to compare. That means if we just add //the letters for m we get the new word return prefix.length() == 0 ? 0.0f : 1.0f - ((float) m / prefix.length()); } if (m == 0) { return prefix.length() == 0 ? 0.0f : 1.0f - ((float) n / prefix.length()); } final int maxDistance = calculateMaxDistance(m); if (maxDistance < Math.abs(m-n)) { //just adding the characters of m to n or vice-versa results in //too many edits //for example "pre" length is 3 and "prefixes" length is 8. We can see that //given this optimal circumstance, the edit distance cannot be less than 5. //which is 8-3 or more precisely Math.abs(3-8). //if our maximum edit distance is 4, then we can discard this word //without looking at it. return 0.0f; } // init matrix d for (int i = 0; i<=n; ++i) { p[i] = i; } // start computing edit distance for (int j = 1; j<=m; ++j) { // iterates through target int bestPossibleEditDistance = m; final char t_j = target.charAt(j-1); // jth character of t d[0] = j; for (int i=1; i<=n; ++i) { // iterates through text // minimum of cell to the left+1, to the top+1, diagonally left and up +(0|1) if (t_j != text.charAt(i-1)) { d[i] = Math.min(Math.min(d[i-1], p[i]), p[i-1]) + 1; } else { d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1), p[i-1]); } bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i]); } //After calculating row i, the best possible edit distance //can be found by found by finding the smallest value in a given column. //If the bestPossibleEditDistance is greater than the max distance, abort. if (j > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater //the closest the target can be to the text is just too far away. //this target is leaving the party early. return 0.0f; } // copy current distance counts to 'previous row' distance counts: swap p and d int _d[] = p; p = d; d = _d; } // our last action in the above loop was to switch d and p, so p now // actually has the most recent cost counts // this will return less than 0.0 when the edit distance is // greater than the number of characters in the shorter word. // but this was the formula that was previously used in FuzzyTermEnum, // so it has not been changed (even though minimumSimilarity must be // greater than 0.0) return 1.0f - ((float)p[n] / (float) (prefix.length() + Math.min(n, m))); } /** * The max Distance is the maximum Levenshtein distance for the text * compared to some other value that results in score that is * better than the minimum similarity. * @param m the length of the "other value" * @return the maximum levenshtein distance that we care about */ private int calculateMaxDistance(int m) { return (int) ((1-minimumSimilarity) * (Math.min(text.length(), m) + prefix.length())); } /** {@inheritDoc} */ @Override public void close() throws IOException { p = d = null; searchTerm = null; super.close(); //call super.close() and let the garbage collector do its work. } }