/** * Copyright 2004-2005 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.search.similar; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.io.Reader; import java.io.StringReader; import java.net.URL; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.Set; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.TermAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.Term; import org.apache.lucene.index.TermFreqVector; import org.apache.lucene.search.BooleanClause; import org.apache.lucene.search.BooleanQuery; import org.apache.lucene.search.DefaultSimilarity; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.Similarity; import org.apache.lucene.search.TermQuery; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.FSDirectory; import org.apache.lucene.util.PriorityQueue; import org.apache.lucene.util.Version; /** * Generate "more like this" similarity queries. * Based on this mail: * <code><pre> * Lucene does let you access the document frequency of terms, with IndexReader.docFreq(). * Term frequencies can be computed by re-tokenizing the text, which, for a single document, * is usually fast enough. But looking up the docFreq() of every term in the document is * probably too slow. * * You can use some heuristics to prune the set of terms, to avoid calling docFreq() too much, * or at all. Since you're trying to maximize a tf*idf score, you're probably most interested * in terms with a high tf. Choosing a tf threshold even as low as two or three will radically * reduce the number of terms under consideration. Another heuristic is that terms with a * high idf (i.e., a low df) tend to be longer. So you could threshold the terms by the * number of characters, not selecting anything less than, e.g., six or seven characters. * With these sorts of heuristics you can usually find small set of, e.g., ten or fewer terms * that do a pretty good job of characterizing a document. * * It all depends on what you're trying to do. If you're trying to eek out that last percent * of precision and recall regardless of computational difficulty so that you can win a TREC * competition, then the techniques I mention above are useless. But if you're trying to * provide a "more like this" button on a search results page that does a decent job and has * good performance, such techniques might be useful. * * An efficient, effective "more-like-this" query generator would be a great contribution, if * anyone's interested. I'd imagine that it would take a Reader or a String (the document's * text), analyzer Analyzer, and return a set of representative terms using heuristics like those * above. The frequency and length thresholds could be parameters, etc. * * Doug * </pre></code> * * * <p> * <h3>Initial Usage</h3> * * This class has lots of options to try to make it efficient and flexible. * See the body of {@link #main main()} below in the source for real code, or * if you want pseudo code, the simplest possible usage is as follows. The bold * fragment is specific to this class. * * <code><pre> * * IndexReader ir = ... * IndexSearcher is = ... * <b> * MoreLikeThis mlt = new MoreLikeThis(ir); * Reader target = ... </b><em>// orig source of doc you want to find similarities to</em><b> * Query query = mlt.like( target); * </b> * Hits hits = is.search(query); * <em>// now the usual iteration thru 'hits' - the only thing to watch for is to make sure * you ignore the doc if it matches your 'target' document, as it should be similar to itself </em> * * </pre></code> * * Thus you: * <ol> * <li> do your normal, Lucene setup for searching, * <li> create a MoreLikeThis, * <li> get the text of the doc you want to find similarities to * <li> then call one of the like() calls to generate a similarity query * <li> call the searcher to find the similar docs * </ol> * * <h3>More Advanced Usage</h3> * * You may want to use {@link #setFieldNames setFieldNames(...)} so you can examine * multiple fields (e.g. body and title) for similarity. * <p> * * Depending on the size of your index and the size and makeup of your documents you * may want to call the other set methods to control how the similarity queries are * generated: * <ul> * <li> {@link #setMinTermFreq setMinTermFreq(...)} * <li> {@link #setMinDocFreq setMinDocFreq(...)} * <li> {@link #setMaxDocFreq setMaxDocFreq(...)} * <li> {@link #setMaxDocFreqPct setMaxDocFreqPct(...)} * <li> {@link #setMinWordLen setMinWordLen(...)} * <li> {@link #setMaxWordLen setMaxWordLen(...)} * <li> {@link #setMaxQueryTerms setMaxQueryTerms(...)} * <li> {@link #setMaxNumTokensParsed setMaxNumTokensParsed(...)} * <li> {@link #setStopWords setStopWord(...)} * </ul> * * <hr> * <pre> * Changes: Mark Harwood 29/02/04 * Some bugfixing, some refactoring, some optimisation. * - bugfix: retrieveTerms(int docNum) was not working for indexes without a termvector -added missing code * - bugfix: No significant terms being created for fields with a termvector - because * was only counting one occurrence per term/field pair in calculations(ie not including frequency info from TermVector) * - refactor: moved common code into isNoiseWord() * - optimise: when no termvector support available - used maxNumTermsParsed to limit amount of tokenization * </pre> * */ public final class MoreLikeThis { /** * Default maximum number of tokens to parse in each example doc field that is not stored with TermVector support. * @see #getMaxNumTokensParsed */ public static final int DEFAULT_MAX_NUM_TOKENS_PARSED=5000; /** * Default analyzer to parse source doc with. * @see #getAnalyzer */ public static final Analyzer DEFAULT_ANALYZER = new StandardAnalyzer(Version.LUCENE_CURRENT); /** * Ignore terms with less than this frequency in the source doc. * @see #getMinTermFreq * @see #setMinTermFreq */ public static final int DEFAULT_MIN_TERM_FREQ = 2; /** * Ignore words which do not occur in at least this many docs. * @see #getMinDocFreq * @see #setMinDocFreq */ public static final int DEFAULT_MIN_DOC_FREQ = 5; /** * Ignore words which occur in more than this many docs. * @see #getMaxDocFreq * @see #setMaxDocFreq * @see #setMaxDocFreqPct */ public static final int DEFAULT_MAX_DOC_FREQ = Integer.MAX_VALUE; /** * Boost terms in query based on score. * @see #isBoost * @see #setBoost */ public static final boolean DEFAULT_BOOST = false; /** * Default field names. Null is used to specify that the field names should be looked * up at runtime from the provided reader. */ public static final String[] DEFAULT_FIELD_NAMES = new String[] { "contents"}; /** * Ignore words less than this length or if 0 then this has no effect. * @see #getMinWordLen * @see #setMinWordLen */ public static final int DEFAULT_MIN_WORD_LENGTH = 0; /** * Ignore words greater than this length or if 0 then this has no effect. * @see #getMaxWordLen * @see #setMaxWordLen */ public static final int DEFAULT_MAX_WORD_LENGTH = 0; /** * Default set of stopwords. * If null means to allow stop words. * * @see #setStopWords * @see #getStopWords */ public static final Set<?> DEFAULT_STOP_WORDS = null; /** * Current set of stop words. */ private Set<?> stopWords = DEFAULT_STOP_WORDS; /** * Return a Query with no more than this many terms. * * @see BooleanQuery#getMaxClauseCount * @see #getMaxQueryTerms * @see #setMaxQueryTerms */ public static final int DEFAULT_MAX_QUERY_TERMS = 25; /** * Analyzer that will be used to parse the doc. */ private Analyzer analyzer = DEFAULT_ANALYZER; /** * Ignore words less frequent that this. */ private int minTermFreq = DEFAULT_MIN_TERM_FREQ; /** * Ignore words which do not occur in at least this many docs. */ private int minDocFreq = DEFAULT_MIN_DOC_FREQ; /** * Ignore words which occur in more than this many docs. */ private int maxDocFreq = DEFAULT_MAX_DOC_FREQ; /** * Should we apply a boost to the Query based on the scores? */ private boolean boost = DEFAULT_BOOST; /** * Field name we'll analyze. */ private String[] fieldNames = DEFAULT_FIELD_NAMES; /** * The maximum number of tokens to parse in each example doc field that is not stored with TermVector support */ private int maxNumTokensParsed=DEFAULT_MAX_NUM_TOKENS_PARSED; /** * Ignore words if less than this len. */ private int minWordLen = DEFAULT_MIN_WORD_LENGTH; /** * Ignore words if greater than this len. */ private int maxWordLen = DEFAULT_MAX_WORD_LENGTH; /** * Don't return a query longer than this. */ private int maxQueryTerms = DEFAULT_MAX_QUERY_TERMS; /** * For idf() calculations. */ private Similarity similarity;// = new DefaultSimilarity(); /** * IndexReader to use */ private final IndexReader ir; /** * Boost factor to use when boosting the terms */ private float boostFactor = 1; /** * Returns the boost factor used when boosting terms * @return the boost factor used when boosting terms */ public float getBoostFactor() { return boostFactor; } /** * Sets the boost factor to use when boosting terms * @param boostFactor */ public void setBoostFactor(float boostFactor) { this.boostFactor = boostFactor; } /** * Constructor requiring an IndexReader. */ public MoreLikeThis(IndexReader ir) { this(ir, new DefaultSimilarity()); } public MoreLikeThis(IndexReader ir, Similarity sim){ this.ir = ir; this.similarity = sim; } public Similarity getSimilarity() { return similarity; } public void setSimilarity(Similarity similarity) { this.similarity = similarity; } /** * Returns an analyzer that will be used to parse source doc with. The default analyzer * is the {@link #DEFAULT_ANALYZER}. * * @return the analyzer that will be used to parse source doc with. * @see #DEFAULT_ANALYZER */ public Analyzer getAnalyzer() { return analyzer; } /** * Sets the analyzer to use. An analyzer is not required for generating a query with the * {@link #like(int)} method, all other 'like' methods require an analyzer. * * @param analyzer the analyzer to use to tokenize text. */ public void setAnalyzer(Analyzer analyzer) { this.analyzer = analyzer; } /** * Returns the frequency below which terms will be ignored in the source doc. The default * frequency is the {@link #DEFAULT_MIN_TERM_FREQ}. * * @return the frequency below which terms will be ignored in the source doc. */ public int getMinTermFreq() { return minTermFreq; } /** * Sets the frequency below which terms will be ignored in the source doc. * * @param minTermFreq the frequency below which terms will be ignored in the source doc. */ public void setMinTermFreq(int minTermFreq) { this.minTermFreq = minTermFreq; } /** * Returns the frequency at which words will be ignored which do not occur in at least this * many docs. The default frequency is {@link #DEFAULT_MIN_DOC_FREQ}. * * @return the frequency at which words will be ignored which do not occur in at least this * many docs. */ public int getMinDocFreq() { return minDocFreq; } /** * Sets the frequency at which words will be ignored which do not occur in at least this * many docs. * * @param minDocFreq the frequency at which words will be ignored which do not occur in at * least this many docs. */ public void setMinDocFreq(int minDocFreq) { this.minDocFreq = minDocFreq; } /** * Returns the maximum frequency in which words may still appear. * Words that appear in more than this many docs will be ignored. The default frequency is * {@link #DEFAULT_MAX_DOC_FREQ}. * * @return get the maximum frequency at which words are still allowed, * words which occur in more docs than this are ignored. */ public int getMaxDocFreq() { return maxDocFreq; } /** * Set the maximum frequency in which words may still appear. Words that appear * in more than this many docs will be ignored. * * @param maxFreq * the maximum count of documents that a term may appear * in to be still considered relevant */ public void setMaxDocFreq(int maxFreq) { this.maxDocFreq = maxFreq; } /** * Set the maximum percentage in which words may still appear. Words that appear * in more than this many percent of all docs will be ignored. * * @param maxPercentage * the maximum percentage of documents (0-100) that a term may appear * in to be still considered relevant */ public void setMaxDocFreqPct(int maxPercentage) { this.maxDocFreq = maxPercentage * ir.numDocs() / 100; } /** * Returns whether to boost terms in query based on "score" or not. The default is * {@link #DEFAULT_BOOST}. * * @return whether to boost terms in query based on "score" or not. * @see #setBoost */ public boolean isBoost() { return boost; } /** * Sets whether to boost terms in query based on "score" or not. * * @param boost true to boost terms in query based on "score", false otherwise. * @see #isBoost */ public void setBoost(boolean boost) { this.boost = boost; } /** * Returns the field names that will be used when generating the 'More Like This' query. * The default field names that will be used is {@link #DEFAULT_FIELD_NAMES}. * * @return the field names that will be used when generating the 'More Like This' query. */ public String[] getFieldNames() { return fieldNames; } /** * Sets the field names that will be used when generating the 'More Like This' query. * Set this to null for the field names to be determined at runtime from the IndexReader * provided in the constructor. * * @param fieldNames the field names that will be used when generating the 'More Like This' * query. */ public void setFieldNames(String[] fieldNames) { this.fieldNames = fieldNames; } /** * Returns the minimum word length below which words will be ignored. Set this to 0 for no * minimum word length. The default is {@link #DEFAULT_MIN_WORD_LENGTH}. * * @return the minimum word length below which words will be ignored. */ public int getMinWordLen() { return minWordLen; } /** * Sets the minimum word length below which words will be ignored. * * @param minWordLen the minimum word length below which words will be ignored. */ public void setMinWordLen(int minWordLen) { this.minWordLen = minWordLen; } /** * Returns the maximum word length above which words will be ignored. Set this to 0 for no * maximum word length. The default is {@link #DEFAULT_MAX_WORD_LENGTH}. * * @return the maximum word length above which words will be ignored. */ public int getMaxWordLen() { return maxWordLen; } /** * Sets the maximum word length above which words will be ignored. * * @param maxWordLen the maximum word length above which words will be ignored. */ public void setMaxWordLen(int maxWordLen) { this.maxWordLen = maxWordLen; } /** * Set the set of stopwords. * Any word in this set is considered "uninteresting" and ignored. * Even if your Analyzer allows stopwords, you might want to tell the MoreLikeThis code to ignore them, as * for the purposes of document similarity it seems reasonable to assume that "a stop word is never interesting". * * @param stopWords set of stopwords, if null it means to allow stop words * * @see org.apache.lucene.analysis.StopFilter#makeStopSet StopFilter.makeStopSet() * @see #getStopWords */ public void setStopWords(Set<?> stopWords) { this.stopWords = stopWords; } /** * Get the current stop words being used. * @see #setStopWords */ public Set<?> getStopWords() { return stopWords; } /** * Returns the maximum number of query terms that will be included in any generated query. * The default is {@link #DEFAULT_MAX_QUERY_TERMS}. * * @return the maximum number of query terms that will be included in any generated query. */ public int getMaxQueryTerms() { return maxQueryTerms; } /** * Sets the maximum number of query terms that will be included in any generated query. * * @param maxQueryTerms the maximum number of query terms that will be included in any * generated query. */ public void setMaxQueryTerms(int maxQueryTerms) { this.maxQueryTerms = maxQueryTerms; } /** * @return The maximum number of tokens to parse in each example doc field that is not stored with TermVector support * @see #DEFAULT_MAX_NUM_TOKENS_PARSED */ public int getMaxNumTokensParsed() { return maxNumTokensParsed; } /** * @param i The maximum number of tokens to parse in each example doc field that is not stored with TermVector support */ public void setMaxNumTokensParsed(int i) { maxNumTokensParsed = i; } /** * Return a query that will return docs like the passed lucene document ID. * * @param docNum the documentID of the lucene doc to generate the 'More Like This" query for. * @return a query that will return docs like the passed lucene document ID. */ public Query like(int docNum) throws IOException { if (fieldNames == null) { // gather list of valid fields from lucene Collection<String> fields = ir.getFieldNames( IndexReader.FieldOption.INDEXED); fieldNames = fields.toArray(new String[fields.size()]); } return createQuery(retrieveTerms(docNum)); } /** * Return a query that will return docs like the passed file. * * @return a query that will return docs like the passed file. */ public Query like(File f) throws IOException { if (fieldNames == null) { // gather list of valid fields from lucene Collection<String> fields = ir.getFieldNames( IndexReader.FieldOption.INDEXED); fieldNames = fields.toArray(new String[fields.size()]); } return like(new FileReader(f)); } /** * Return a query that will return docs like the passed URL. * * @return a query that will return docs like the passed URL. */ public Query like(URL u) throws IOException { return like(new InputStreamReader(u.openConnection().getInputStream())); } /** * Return a query that will return docs like the passed stream. * * @return a query that will return docs like the passed stream. */ public Query like(java.io.InputStream is) throws IOException { return like(new InputStreamReader(is)); } /** * Return a query that will return docs like the passed Reader. * * @return a query that will return docs like the passed Reader. */ public Query like(Reader r) throws IOException { return createQuery(retrieveTerms(r)); } /** * Create the More like query from a PriorityQueue */ private Query createQuery(PriorityQueue<Object[]> q) { BooleanQuery query = new BooleanQuery(); Object cur; int qterms = 0; float bestScore = 0; while (((cur = q.pop()) != null)) { Object[] ar = (Object[]) cur; TermQuery tq = new TermQuery(new Term((String) ar[1], (String) ar[0])); if (boost) { if (qterms == 0) { bestScore = ((Float) ar[2]).floatValue(); } float myScore = ((Float) ar[2]).floatValue(); tq.setBoost(boostFactor * myScore / bestScore); } try { query.add(tq, BooleanClause.Occur.SHOULD); } catch (BooleanQuery.TooManyClauses ignore) { break; } qterms++; if (maxQueryTerms > 0 && qterms >= maxQueryTerms) { break; } } return query; } /** * Create a PriorityQueue from a word->tf map. * * @param words a map of words keyed on the word(String) with Int objects as the values. */ private PriorityQueue<Object[]> createQueue(Map<String,Int> words) throws IOException { // have collected all words in doc and their freqs int numDocs = ir.numDocs(); FreqQ res = new FreqQ(words.size()); // will order words by score Iterator<String> it = words.keySet().iterator(); while (it.hasNext()) { // for every word String word = it.next(); int tf = words.get(word).x; // term freq in the source doc if (minTermFreq > 0 && tf < minTermFreq) { continue; // filter out words that don't occur enough times in the source } // go through all the fields and find the largest document frequency String topField = fieldNames[0]; int docFreq = 0; for (int i = 0; i < fieldNames.length; i++) { int freq = ir.docFreq(new Term(fieldNames[i], word)); topField = (freq > docFreq) ? fieldNames[i] : topField; docFreq = (freq > docFreq) ? freq : docFreq; } if (minDocFreq > 0 && docFreq < minDocFreq) { continue; // filter out words that don't occur in enough docs } if (docFreq > maxDocFreq) { continue; // filter out words that occur in too many docs } if (docFreq == 0) { continue; // index update problem? } float idf = similarity.idf(docFreq, numDocs); float score = tf * idf; // only really need 1st 3 entries, other ones are for troubleshooting res.insertWithOverflow(new Object[]{word, // the word topField, // the top field Float.valueOf(score), // overall score Float.valueOf(idf), // idf Integer.valueOf(docFreq), // freq in all docs Integer.valueOf(tf) }); } return res; } /** * Describe the parameters that control how the "more like this" query is formed. */ public String describeParams() { StringBuilder sb = new StringBuilder(); sb.append("\t" + "maxQueryTerms : " + maxQueryTerms + "\n"); sb.append("\t" + "minWordLen : " + minWordLen + "\n"); sb.append("\t" + "maxWordLen : " + maxWordLen + "\n"); sb.append("\t" + "fieldNames : "); String delim = ""; for (int i = 0; i < fieldNames.length; i++) { String fieldName = fieldNames[i]; sb.append(delim).append(fieldName); delim = ", "; } sb.append("\n"); sb.append("\t" + "boost : " + boost + "\n"); sb.append("\t" + "minTermFreq : " + minTermFreq + "\n"); sb.append("\t" + "minDocFreq : " + minDocFreq + "\n"); return sb.toString(); } /** * Test driver. * Pass in "-i INDEX" and then either "-fn FILE" or "-url URL". */ public static void main(String[] a) throws Throwable { String indexName = "localhost_index"; String fn = "c:/Program Files/Apache Group/Apache/htdocs/manual/vhosts/index.html.en"; URL url = null; for (int i = 0; i < a.length; i++) { if (a[i].equals("-i")) { indexName = a[++i]; } else if (a[i].equals("-f")) { fn = a[++i]; } else if (a[i].equals("-url")) { url = new URL(a[++i]); } } PrintStream o = System.out; FSDirectory dir = FSDirectory.open(new File(indexName)); IndexReader r = IndexReader.open(dir, true); o.println("Open index " + indexName + " which has " + r.numDocs() + " docs"); MoreLikeThis mlt = new MoreLikeThis(r); o.println("Query generation parameters:"); o.println(mlt.describeParams()); o.println(); Query query = null; if (url != null) { o.println("Parsing URL: " + url); query = mlt.like(url); } else if (fn != null) { o.println("Parsing file: " + fn); query = mlt.like(new File(fn)); } o.println("q: " + query); o.println(); IndexSearcher searcher = new IndexSearcher(dir, true); TopDocs hits = searcher.search(query, null, 25); int len = hits.totalHits; o.println("found: " + len + " documents matching"); o.println(); ScoreDoc[] scoreDocs = hits.scoreDocs; for (int i = 0; i < Math.min(25, len); i++) { Document d = searcher.doc(scoreDocs[i].doc); String summary = d.get( "summary"); o.println("score : " + scoreDocs[i].score); o.println("url : " + d.get("url")); o.println("\ttitle : " + d.get("title")); if ( summary != null) o.println("\tsummary: " + d.get("summary")); o.println(); } } /** * Find words for a more-like-this query former. * * @param docNum the id of the lucene document from which to find terms */ public PriorityQueue<Object[]> retrieveTerms(int docNum) throws IOException { Map<String,Int> termFreqMap = new HashMap<String,Int>(); for (int i = 0; i < fieldNames.length; i++) { String fieldName = fieldNames[i]; TermFreqVector vector = ir.getTermFreqVector(docNum, fieldName); // field does not store term vector info if (vector == null) { Document d=ir.document(docNum); String text[]=d.getValues(fieldName); if(text!=null) { for (int j = 0; j < text.length; j++) { addTermFrequencies(new StringReader(text[j]), termFreqMap, fieldName); } } } else { addTermFrequencies(termFreqMap, vector); } } return createQueue(termFreqMap); } /** * Adds terms and frequencies found in vector into the Map termFreqMap * @param termFreqMap a Map of terms and their frequencies * @param vector List of terms and their frequencies for a doc/field */ private void addTermFrequencies(Map<String,Int> termFreqMap, TermFreqVector vector) { String[] terms = vector.getTerms(); int freqs[]=vector.getTermFrequencies(); for (int j = 0; j < terms.length; j++) { String term = terms[j]; if(isNoiseWord(term)){ continue; } // increment frequency Int cnt = termFreqMap.get(term); if (cnt == null) { cnt=new Int(); termFreqMap.put(term, cnt); cnt.x=freqs[j]; } else { cnt.x+=freqs[j]; } } } /** * Adds term frequencies found by tokenizing text from reader into the Map words * @param r a source of text to be tokenized * @param termFreqMap a Map of terms and their frequencies * @param fieldName Used by analyzer for any special per-field analysis */ private void addTermFrequencies(Reader r, Map<String,Int> termFreqMap, String fieldName) throws IOException { TokenStream ts = analyzer.tokenStream(fieldName, r); int tokenCount=0; // for every token TermAttribute termAtt = ts.addAttribute(TermAttribute.class); while (ts.incrementToken()) { String word = termAtt.term(); tokenCount++; if(tokenCount>maxNumTokensParsed) { break; } if(isNoiseWord(word)){ continue; } // increment frequency Int cnt = termFreqMap.get(word); if (cnt == null) { termFreqMap.put(word, new Int()); } else { cnt.x++; } } } /** determines if the passed term is likely to be of interest in "more like" comparisons * * @param term The word being considered * @return true if should be ignored, false if should be used in further analysis */ private boolean isNoiseWord(String term) { int len = term.length(); if (minWordLen > 0 && len < minWordLen) { return true; } if (maxWordLen > 0 && len > maxWordLen) { return true; } if (stopWords != null && stopWords.contains( term)) { return true; } return false; } /** * Find words for a more-like-this query former. * The result is a priority queue of arrays with one entry for <b>every word</b> in the document. * Each array has 6 elements. * The elements are: * <ol> * <li> The word (String) * <li> The top field that this word comes from (String) * <li> The score for this word (Float) * <li> The IDF value (Float) * <li> The frequency of this word in the index (Integer) * <li> The frequency of this word in the source document (Integer) * </ol> * This is a somewhat "advanced" routine, and in general only the 1st entry in the array is of interest. * This method is exposed so that you can identify the "interesting words" in a document. * For an easier method to call see {@link #retrieveInterestingTerms retrieveInterestingTerms()}. * * @param r the reader that has the content of the document * @return the most interesting words in the document ordered by score, with the highest scoring, or best entry, first * * @see #retrieveInterestingTerms */ public PriorityQueue<Object[]> retrieveTerms(Reader r) throws IOException { Map<String,Int> words = new HashMap<String,Int>(); for (int i = 0; i < fieldNames.length; i++) { String fieldName = fieldNames[i]; addTermFrequencies(r, words, fieldName); } return createQueue(words); } /** * @see #retrieveInterestingTerms(java.io.Reader) */ public String [] retrieveInterestingTerms(int docNum) throws IOException{ ArrayList<Object> al = new ArrayList<Object>( maxQueryTerms); PriorityQueue<Object[]> pq = retrieveTerms(docNum); Object cur; int lim = maxQueryTerms; // have to be careful, retrieveTerms returns all words but that's probably not useful to our caller... // we just want to return the top words while (((cur = pq.pop()) != null) && lim-- > 0) { Object[] ar = (Object[]) cur; al.add( ar[ 0]); // the 1st entry is the interesting word } String[] res = new String[ al.size()]; return al.toArray( res); } /** * Convenience routine to make it easy to return the most interesting words in a document. * More advanced users will call {@link #retrieveTerms(java.io.Reader) retrieveTerms()} directly. * @param r the source document * @return the most interesting words in the document * * @see #retrieveTerms(java.io.Reader) * @see #setMaxQueryTerms */ public String[] retrieveInterestingTerms( Reader r) throws IOException { ArrayList<Object> al = new ArrayList<Object>( maxQueryTerms); PriorityQueue<Object[]> pq = retrieveTerms( r); Object cur; int lim = maxQueryTerms; // have to be careful, retrieveTerms returns all words but that's probably not useful to our caller... // we just want to return the top words while (((cur = pq.pop()) != null) && lim-- > 0) { Object[] ar = (Object[]) cur; al.add( ar[ 0]); // the 1st entry is the interesting word } String[] res = new String[ al.size()]; return al.toArray( res); } /** * PriorityQueue that orders words by score. */ private static class FreqQ extends PriorityQueue<Object[]> { FreqQ (int s) { initialize(s); } @Override protected boolean lessThan(Object[] aa, Object[] bb) { Float fa = (Float) aa[2]; Float fb = (Float) bb[2]; return fa.floatValue() > fb.floatValue(); } } /** * Use for frequencies and to avoid renewing Integers. */ private static class Int { int x; Int() { x = 1; } } }